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Preface

This volume is composed of notes from lectures given at the 40th Karpacz
Winter School, which focused on “Quantum Gravity Phenomenology” partic-
ularly its applications in astrophysics and cosmology.

After several decades in which the quantum-gravity problem was studied in
a way that did not involve at all the confrontation with experiments [1, 2], over
the last few years the idea of testing quantum-gravity ideas using experimental
data has attracted significant interest. It was just around the time of the 35th
Karpacz Winter School [3] that this change of attitude materialized in a part
of the quantum-gravity community. And discussions that got started at the
time of the 35th Karpacz Winter School finally led to the choice of topic of
this 40th Karpacz Winter School.

The idea was to give students attending the school an opportunity for a
short introduction to the heavily mathematical subjects that compose pure-
theory quantum-gravity research, and then expose them to the core ideas
that allow us to test some Planck-scale effects, especially in astrophysics and
cosmology.

The lectures by Alvarez provide a brief introduction and review of string
theory and loop quantum gravity, the two most popular approaches to the
quantum-gravity problem. His lectures of course do not provide a detailed
account of all of the technical developments in these heavily technical fields,
but they strike a nice balance, combining an elementary technical introduction
to the subjects with a perspective which emphasizes some key strengths and
some key weaknesses of each of these two approaches. Readers interested in
a more detailed technical introduction to string theory and loop quantum
gravity will find useful the [4, 5] and [6, 7, 8, 9], respectively.

On the loop-quantum-gravity side the lectures by Smolin nicely comple-
ment Alvarez’s lectures. In fact, Smolin provides a pedagogical introduction to
some advanced aspects of the loop-quantum-gravity research program which
have recently taken center stage. In particular, in Smolin’s lecture notes the
reader is exposed to the idea of recovering Minkowski space, in quantum
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gravity, only through a procedure which requires, as an intermediate step, the
(quantum) description of deSitter spacetime.

Some advanced topics in “loop quantum gravity” were also introduced in
the invited seminars by Pullin, which are not covered in this volume. Following
the line of analysis of [10] and references therein, he presented the “consistent
discretization” approach to general relativity, showing that this leads to a
theory that has as its physical space what is usually considered the kinematical
space of loop quantum gravity.

A first introduction to the ideas and to the most fundamental techniques
used in quantum-gravity phenomenology is given in the lecture notes by
Amelino-Camelia, who also stresses the importance of relying on some suitable
test theories in developing this phenomenology.

The theme of working with test theories and pushing forward the experi-
mental bounds on some commonly-adopted reference test theories was further
explored in the lectures by Laemmerzahl. His lectures focus on the use of in-
terferometry in various areas of interest for the quantum-gravity problem,
including tests of the equivalence principle and tests of Lorentz symmetry.

In addition to parts of the lectures by Amelino-Camelia and Laemmerzahl,
several other lectures also focused or at least touched upon the subject of the
fate of Lorentz symmetry in quantum-gravity theories. The fact that in var-
ious approaches to the quantum-gravity problem there is some evidence of
departures from Lorentz symmetry, and the fact that several observatories
are preparing to provide us with a gigantic leap forward in the quality of
Lorentz-symmetry tests, combined to bring this subject to the top of the list
of priorities for the School. On the theory side a key issue here is the one of
establishing whether Lorentz symmetry is “broken”, in the sense commonly
encountered in the analysis of particle physics in the presence of external me-
dia, or “deformed”, in the sense of the “doubly-special relativity” proposal
of [11, 12]. While the various scenarios for broken Lorentz symmetry were
discussed briefly when appropriate in various lectures, the concept of defor-
mation of Lorentz symmetry was introduced pedagogically in the dedicated
lectures by Kowalski-Glikman, since this familiar concept of broken symme-
tries did not require a significant tutoring effort. His lectures emphasize in
particular some delicate issues that have emerged in doubly-special-relativity
research, including the role that, at least to some extent, could be played by
the mathematics of κ-Poincaré Hopf algebras.

From a more phenomenological perspective the possibility of Planck-scale
modifications of Lorentz symmetry was the main focus of the lectures by
Jacobson, Grillo and Piran. The lectures delivered by Jacobson gave an
overview of several opportunities that modern astrophysics provides for testing
Lorentz symmetry with Planck-scale sensitivity. Grillo focused on the study
of the cosmic-ray spectrum, especially as it will soon be studied by the Pierre
Auger Observatory, which should be the best opportunity for dramatic im-
provement in the quality of our tests of Planck-scale modifications of Lorentz
symmetry. Piran gave detailed pedagogical lectures on the research line that
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intends to constrain Planck-scale departures of Lorentz symmetry using data
on gamma-ray bursters, and in particular he stressed some features of gamma-
ray bursters which could effectively could the act as troublesome background
for the quantum-gravity studies.

The lectures by Mavromatos and Ng focused on some examples of phenom-
enological programs which can be primarily motivated by some descriptions
of “spacetime foam”. Both lectures provided further encouragement for the
idea of Planck-scale departures from Lorentz symmetry. Mavromatos empha-
sized even more strongly the possibility of Planck-scale departures from CPT
symmetry, and discussed a rich CPT phenomenology. Ng also discussed some
other spacetime-foam effects which could be investigated with modern inter-
ferometers.

Martin’s lectures gave a pedagogical introduction to the research area that
investigates the possibility of quantum-gravity effects in cosmology.

This “quantum-gravity cosmology” was also the subject of invited semi-
nars by de Bernardis, which are not covered in this volume. He gave a detailed
description of the BOOMERANG and WMAP experiments following roughly
the line of analysis presented in [13].

The invited seminars by Lipari, which were based on some of his works
in preparation, provided a perspective on several aspects of gamma-ray and
cosmic-ray physics, which are relevant for the topics covered by other lecturers.

The invited seminar by Urrutia presented yet another intriguing perspec-
tive on the phenomenology of Planck-scale departures from Lorentz symmetry,
following roughly the line of analysis presented in [14].

Also the seminars contributed by several participants were very impor-
tant for the overall balance of the school. In particular, lively discussions
were generated by the seminars by Arzano [15], Bruno [16], Doplicher [17],
Hinterleitner [18], Liberati [19], Mandanici [20], Martinetti, Mattingly [19],
Mendez [21], Oriti, Penna-Firme, Rembielinski, Rychkov [22], Sudarsky [23]
and Turko.

We owe special thanks to all lecturers and all other speakers, and we are
particularly grateful for the lucky assortment of students and senior partic-
ipants who attended the school. The enthusiasm of the students for all lec-
tures was a major source of energy for the school. We were amazed to see
students requesting on several occasions additional hours of lecture by some
lecturers, which were often scheduled after dinner (the feared “8pm–10pm ex-
tra lectures”). Perhaps the unfriendly weather outside the hotel that hosted
the school had something to do with all this enthusiasm for lectures, but it
nonetheless contributed to a wonderful 10 days of physics.

Finally we would like to thank the Rector of the University of Wroclaw,
the Polish Ministry of Education, the Foundation for Karpacz Winter Schools
in Theoretical Physics, and the European Physical Society for their generous
financial support. Thanks are due Professor Jerzy Lukierski, Director of the
Institute for Theoretical Physics of the University of Wroclaw, for his encour-
agement support and help, to Mrs. Katarzyna Imilkowska, who did a great job
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as the School secretary, and to Dr. Wojciech Cegla, who oversaw the School
finances.

Giovanni Amelino-Camelia
April, 2005 Jerzy Kowalski-Glikman
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Abstract. Quite unexpectedly, to many of us at least, Planck scale physics has in
last years made irruption in present experimental physics. In these lectures I try to
describe why this happened particularly in relation to Ultra High Energy Cosmic
Ray Physics, and will discuss the potentialities of experiments in this field, in par-
ticular of the Pierre Auger Observatory. I will also present some (more theoretical)
speculations.

1 Motivations

In this report I will mix theoretical and phenomenological considerations.
However, being a theorist who has spent a large part of his activity as a
Cosmic Ray experimentalist, I will always try to keep experimental verifica-
tion/falsification as the main guide in approaching theories, and more so in
this field connected to the possibly most complex entities (Quantum Gravity
effects) for the experimentalist (and even for most theorists). In this connec-
tion I think that a description of how I entered in this field might be of some
interest.

In fact I remember exactly how this happened: I was attending a seminar
from a colleague of mine (experimentalist, we were both part of the MACRO
experiment at Gran Sasso Laboratory) reporting about the so called Greisen-
Zatsepin-Kuzmin break [1] and the first experimental data from AGASA [2]
which did not show it. While I was mentally searching for possible explana-
tions, I realized that the processes giving rise to the expected break are in
fact low energy processes, since it is always possible to boost back the UHE
proton to a frame where it is at rest, and there the photon must have an
energy only larger than ≈100 MeV to photoproduce a pion. So, no particle
physics explanation for its possible absence was at hand.

R. Aloisio et al.: Planck Scale Kinematics and the Pierre Auger Observatory, Lect. Notes Phys.
669, 1–30 (2005)
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On the other hand I appreciated that in fact the expected presence of
the break is entirely based on an extrapolation of the validity of the Lorentz
transformations up to Lorentz factors γL ≈ 1011 or velocities 1 − β ≈ 10−22.
A verification of the presence of the break would imply a direct comparison
of physics in two frames moving at extreme relative speed.

Unfortunately (and contrary to what is often said in the literature) the ab-
sence of the break does not point by itself to a violation of Lorentz invariance:
since we ultimately do not know the origin of the highest energy particles in
the Cosmic Radiation, there are at least an handful of more mundane expla-
nations for its absence. I will discuss later under which conditions Cosmic Ray
experiments would imply such a radical departure, but from what I said it is
clear that this is tied to the recognition of the sources of these particles.

In March 1997 I presented under the title “The Auger Observatory as a test
ground for very fundamental physics” a short report at the European Auger
meeting that was held in Gran Sasso, and (in collaboration with P. Blasi)
we sent an abstract to the 1997 ICRC conference. However, since we were
not able at the moment to make a more quantitative description of possible
departures from Lorentz Invariance, we withdraw the paper.

Seven years have passed, and I have discovered a very interesting theoret-
ical physics that was largely unknown to me. We also discovered that some
related (and prophetic) ideas were presented in a paper by D.A. Kirzhnits and
V.A. Chechin in 1971, shortly after the prediction of the GZK break [3] .

What has really dramatically changed in the last few years has been the
recognition that the effects of Planck scale physics need not to be confined to
the Planck regime. There are several ways to understand why this happens
at an intuitive level. First, violations of Lorentz invariance should be para-
meterized by some indicator of “relativisticity” so to say; for instance at an
energy of 1020 eV a proton, on a logarithmic scale is nearer to the Planck scale
(1028 eV) than to its rest mass.

Second, in the Cosmic Microwave Background Radiation (CMBR) frame,
i.e. the frame in which the CMBR is isotropic with a photon energy distribu-
tion corresponding to a Planckian of temperature ≈ 2.7◦K, a 1020 eV proton
only needs a fractional gain in energy ≈10−22 to perform the transition to
the final πp state. Of course there is nothing miraculous in this since Lorentz
invariance guarantees that this is exactly equivalent to what happens in a
frame in which the proton is at rest and the photon has an energy larger than
≈100 MeV. But this also displays the fact that even very tiny violations of
relativistic invariance are bound to give, in some selected reactions at least,
observable effects.

And, third, an example of reactions very sensitive to even small depar-
tures from L.I. is given by particle production thresholds, which typically
sensitively depend on the rest masses of the (massive) involved particles. The
simplest way of parameterizing departures from relativistic invariance is to
change the form of the LI dispersion relation E2 − p2 = m2 by rewriting it as
E2 − p2 = µ2(E, p). This may be seen as the introduction of an (energy and
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momentum dependent) effective mass that in turn will affect the threshold
energy-momenta, in principle differently in different reference frames.

2 Introduction

The hunt for possible minuscule violations of the fundamental Lorentz invari-
ance (LI) has been object of renewed interest, in particular because it has
been understood that cosmic ray physics has an unprecedented potential for
investigation in this field [3, 4, 5, 6, 7, 8]. Some authors [5, 6, 9] have even
invoked possible violations of LI as a plausible explanation to some puzzling
observations related to the detection of ultra high energy cosmic rays (UHE-
CRs) with energy above the so-called GZK feature [1], and to the unexpected
shape of the spectrum of photons with super-TeV energy from sources at
cosmological distances.

Both types of observations have in fact many uncertainties, that will be
diffusely discussed in the following, either coming from limited statistics of
very rare events, or from accuracy issues in the energy determination of the
detected particles, and it is very possible that the solution to the alleged
puzzles will come from more accurate observations rather than by a violation
of fundamental symmetries.

For this reason, from the very beginning we proposed [7] that cosmic ray
observations should be used as an ideal tool to constrain the minuscule vio-
lations of LI, rather than as evidence for the need to violate LI. The reason
why the cases of UHECRs and TeV gamma rays represent such good test
sites for LI is that both are related to physical processes with a kinematical
energy threshold, which is in turn very sensitive to the smallest violations of
LI. UHECRs are expected to suffer severe energy losses due to photopion pro-
duction off the photons of the cosmic microwave background (CMB), and this
should suppress the flux of particles at the Earth at energies above ∼1020 eV,
the so called GZK feature.

Present largest operating (or just ended) experiments are AGASA [10]
and HiRes [11], and they do not provide strong evidence either in favor or
against the detection of the GZK feature [12]. A substantial increase in the
statistics of events, as expected with the Auger project [13] and with EUSO
[14], should dramatically change the situation and allow to detect the presence
or lack of the GZK feature in the spectrum of UHECRs (see next section for
more detail). Moreover they should in principle be able to perform rather
sensitive anisotropy studies, in particular to search for possible correlations
with distant sources.

These are the observations that will provide the right ground for imposing
a strong limit on violations of LI.In this report I will direct myself only to
Ultra High Energy hadronic Cosmic rays. It is perhaps worth remembering
that a potentially very interesting arena for detecting violations of LI is also
the study of TeV γ sources. For the case of TeV sources, the process involved is
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pair production [15] of high energy gamma rays on the photons of the infrared
background. Also in this case, a small violation of LI can move the threshold
to energies which are smaller than the classical ones, or move them to infinity,
making the reactions impossible. The detection of the GZK suppression or
the cutoff in the gamma ray spectra of gamma ray sources at cosmological
distances will prove that LI is preserved to correspondingly high accuracy [7].

The recipes for the violations of LI generally consist of requiring an explicit
modification of the dispersion relation of high energy particles, due to their
propagation in the “vacuum”, now affected by quantum gravity (QG). This
effect is generally parameterized by introducing a typical mass, expected to
be of the order of the Planck mass (MP ), that sets the scale for QG to become
effective.

This approach has been extensively discussed in the literature (and in sev-
eral reports in these proceedings) so it will be presented here for completeness,
and to set the ground for comparison with possible experimental outcomes of
the new experiments, in particular of the Pierre Auger Observatory.

In particular we discuss at some length the possible outcomes of the next
experiments, and their relevance for the detection of (Quantum Gravity in-
spired) modifications of special relativity.

We next pass to a more speculative level. Explicit modifications of the
dispersion relation are not really necessary in order to produce detectable
effects, as was recently pointed out in [16, 17, 18, 19] for the case of propagation
of UHECRs. It is in fact generally believed that coordinate measurements
cannot be performed with precision better than the Planck distance (time)
δx ≥ lP , namely the distance where the metric of space-time must feature
quantum fluctuations.

A similar line of thought implies that an uncertainty in the measurement
of energy and momentum of particles can be expected, according with the
relation δp � δE � p2/MP . As discussed also in [17, 18] the apparent prob-
lem of super-GZK particles might find a solution also in the context of this
uncertainty approach.

In the second part of these lectures we discuss this approach in some
detail, by taking into account the effects of the propagation of CRs in the QG
vacuum in the presence of the universal microwave background radiation. A
fluctuating metric implies that different measurements of the particle energy
or momentum may result in different outcomes.

A consequence of this approach is that particles with classical energy be-
low the standard Lorentz invariant threshold have a certain probability of
interacting. In the same way, particles above the classical threshold have a
finite probability of evading interaction. We show here that the most striking
consequences of the approach described above derive from low energy parti-
cles rather than from particles otherwise above the threshold for photopion
production.

However, the possibility of a fluctuating energy and momentum is mainly
constrained by other processes that could arise. The fluctuations of energy
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and momentum are responsible, in fact, for decaying processes otherwise im-
possible, typically prevented by energy and momentum conservation. These
decaying processes represent the most stringent test of the proposed model.
From a general point of view a particle propagating in a fluctuating vac-
uum acquires an energy dependent fluctuating effective mass (the fluctuating
dispersion relations introduced in [20]) which may be responsible for kinemat-
ically forbidden decay reactions to become kinematically allowed.

If this happens, particles that are known to be stable would decay, pro-
vided no other fundamental conservation law is violated (e.g.: baryon number
conservation, charge conservation).

The fact that particles that would be otherwise stable could decay has
been known for some time now [21, 22] and in fact it rules out a class of non-
fluctuating modifications of the dispersion relations for some choices of the
sign of the modification: the new point here is that it does not appear to be
possible to fix the sign of the fluctuations, so that the conclusions illustrated
above seem unavoidable. This result represents the most striking test of the
fluctuating picture discussed in this paper and could in principle invalidate
the basis of the proposed model itself.

The plan of the paper is the following: in Sect. 3 we discuss the experimen-
tal results on the UHE Cosmic Ray spectrum and their (marginal) disagree-
ment. This will allow us to give a brief presentation of the Auger experiment
and of its performances.

Next (Sect. 4), we discuss on general grounds the modification of thresholds
coming from violations of LI, mainly to present the level of sensitivity of the
experiments, whose possible outcomes are discussed in Sect. 5.

On a more speculative side, we then discuss (in Sect. 6) the effect of fluc-
tuations on the propagation of high energy particles.

3 The Experimental Data
and the Pierre Auger Observatory

Cosmic Rays particles reach the highest energies known in the present Uni-
verse (see Fig. 1).

It is an open problem the mechanism through which particles are acceler-
ated to such extreme (in fact macroscopic) energies.

Since the discovery of the Cosmic Microwave Background Radiation it has
been clear that the Universe could become opaque to extremely high energy
particles propagating in it via inelastic interactions, in case of protons through
the reaction pUHEγCMB → Nπ in which the proton loses part of its energy.
The threshold energy for this reaction is ≈ 5 1019 eV.

This was appreciated independently by Greisen and Kuzmin and Zatsepin
[1] in 1966. The interaction length can be computed from the data on pion
photoproduction and the number density of target photons and is of the order
of 6 Mparsec; a proton having a production energy much larger than the
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Fig. 1. The overall flux of Cosmic Rays [23] up to 1021 eV

threshold would be brought below threshold after approximately 100 Mparsec.
These numbers are only representative since we are not interested in numerical
details here: it is only necessary to remark that they depend on many details
like for instance phenomenology and cosmological evolution of the possible
sources of UHECRs.

One point that is not often appreciated is that one should not expect a
dramatic change in the CR spectrum at these energies. For instance, assume
that one could associate CRs with their sources1, if the source is more distant
than (approximately) 100 Mparsec, then particle emitted with energy lower
than the threshold travel essentially undisturbed from any distance. On the
contrary, essentially all the particles produced by distant sources above the
threshold are degraded in energy until they go below threshold and propagate
(almost) without further energy change. So the spectrum from a single (D >
100 Mparsec) source is expected to decrease exponentially above the GZK
threshold. However if only the (directions) integrated spectrum is measured
the expected decrease in the flux is

∆φ ≈
∫ <100Mp

Ns/d
2

∫ Dmax Ns/d2
≈ Dmax

100Mpc
(1)

1 Although charged CR are deflected at least in the Galactic magnetic field, at
these energies the deflection is only of few degrees if the extragalactic M.F is not
unexpectedly large, so selecting particles approximately pointing to their origin
is in principle possible
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where Ns is the (unknown) density of UHECR sources, and Dmax is the max-
imum distance from which CR can reach detectors in absence of absorption,
this depending on the evolution of sources and cosmological parameters. More
details can be found for instance in [25], but in any case, if UHECR are of
astrophysical origin a decrease around one order of magnitude is expected.

It is interesting to note that in a few years after 1966 Cosmic Ray exper-
iments (Volcano Ranch, Haverah Park, Yakutsk) were able to claim events
at estimated energies above 1020 eV, inspiring a prophetic article by Russian
physicists D.A. Kirzhnits and V.A. Chechin [3] who discussed the absence of
the GZK structure in view of possible modifications of relativistic invariance.
It is also interesting to notice that this article passed essentially unnoticed, to
be rediscovered from time to time.

The point is that, already in the seventies there appeared to be a problem
at the end of the observed CR spectrum. The same problem may be present
nowadays: when putting together the results of the experiments operating
above the nominal value of the GZK threshold, the data are (marginally)
conflicting, and may (or not) imply the presence of events above it (Fig. 2).

Notice that in the above figure the scale is logaritmic on both axes. Often
the CR spectrum is presented in an amplified way, by multiplying it by an
appropriate (positive) power of energy as in the following figure where the
(reanalyzed) results also of the Yakutsk experiment are presented (Fig. 3).

Fig. 2. The most recent data (Agasa, HiRes) in the highest energy region
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Fig. 3. Same data as above, with Yakutsk data added and flux multiplied by E3

[24]

In this last way of presenting data the discrepancy between experiments
and with the theoretical prediction of the GZK feature is clearly amplified:
however, taking into account possible systematics, it is in fact of marginal
statistical significance [12].

The reason for these discrepancies and the fact that already 30 years ago
there seemed to be a problem not yet settled is related to the intrinsic difficulty
of performing precise Cosmic Ray experiments at least at the energies we are
here discussing of. Here I want just to present some points useful for our
discussion.

At these energies Cosmic Ray Particles are not detected directly, but
through secondaries produced by their interactions in the atmosphere. In fact
when a CR particle interacts a multiplication process starts: in the interaction
in particular at very high energies a large number of particles (mostly pions)
are produced which may reinteract or decay. In particular πo almost imme-
diately decay into two γ which, via pair production and brehmsttrahlung,
start electromagnetic cascades, while other particles (mostly charged pions)
can reinteract producing new secondaries or decay producing for instance
muons and neutrinos. So we are at the presence of a mixed (hadronic and
electromagnetic) shower in which the number of particles quickly increases,
reaches a maximum to finally decrease when absorption interactions in the
atmosphere become relevant (Fig. 5). Notice that the details of shower devel-
opment depend on the nature of the primary (i.e. proton, nucleus, photon. . . ).
Ultimately e.m. particles (photons, electrons, positrons) and muons are by far
the most numerous ones arriving at detector level.

Produced particles move essentially at the speed of light, in a approxi-
mately thin disk (with some curvature far from the center). Due to transverse



Planck Scale Kinematics and the Pierre Auger Observatory 9

momentum distribution, the density of particles in the front rapidly decreases
away from the direction of the primary. In the Extensive Air Showers (EAS)
arrays the thin disk containing the shower front and when it intersects the
detector level is sampled by detectors placed on the surface (Fig. 4). Clearly
the largest area sampled gives better sensitivity and ultimately allows to reach
higher energies, and the smallest possible distance gives better sampling but
at an increased cost.

Fig. 4. A shower impinging detector level. Both the lateral distribution and the
curvature of the front are unrealistic

Fig. 5. Longitudinal profile of a high energy shower in the atmosphere
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The time delay between detectors is used to deduce the direction of the
shower axis; the number of particles depositing energy in each sampling de-
tector, when supplemented by a (theoretical) lateral distribution function of
their number with respect to the shower axis allows to compute an estimator of
the primary energy. This seems a simple enough procedure to implement, but
apart from experimental difficulties, is in principle model dependent since the
shower development must be estimated from simulations, which on the other
hand depend on not so well known quantities: for instance the center-of-mass
energy corresponding to the interaction of a 1020 eV proton is ≈100 TeV, much
higher than that attainable in terrestrial accelerators. Therefore cross sections
used are in fact (theory guided) extrapolations from known hadronic physics,
and in principle introduce difficult to evaluate systematic errors.

Several different experimental approaches can be followed. In fact the
charged particles which make up the shower emit radiation in the atmosphere
in two ways: they move faster than light in the atmosphere, so they emit
Cherenkov radiation, and excite nitrogen molecules, which de-excite emitting
(UV) light; both these forms of radiation can be detected and give information
on Cosmic Ray properties. Cherenkov radiation is strongly directional, and its
detection through dedicated telescopes has opened the field of γ astronomy.

Fluorescence radiation is instead isotropic, and, since it is emitted dur-
ing the whole development of the shower, in principle its detection allows a
calorimetric study of the showers. Moreover, if the telescopes have enough
angular/time resolution, it would allow to follow the details of shower devel-
opment (Fig. 5) and to have hints on the nature of the primary.

Even this detection procedure however has its problems: first, it can only
be exploited when the sky is clear and (in part at least) moonless. Second, it is
relatively easy to measure the integral of the light emitted by the shower, and it
is clear that it is proportional to the total energy. However the proportionality
constant depends critically on the atmospheric transparency, and this has to
be monitored and some aspects might be poorly known. This also introduces
daily variations and systematic errors.

The two most significant experiments reporting data in the GZK region
are the largest representative of these two approaches to UHECR detection.
AGASA [2] in Japan has been the largest operating extensive air shower (EAS)
sampling detector array, having a sensitive area of ≈100 km2 with single de-
tectors placed at a distance of the order of hundreds of metres. It has been
now superseded by the Auger observatory, although still in construction.

The measured events, when compared with expectations (see Fig. 6) were
the confirmation that a puzzle might exist at these extreme energies.

HiRes in the US is the largest experiment exploiting the atmospheric flu-
orescence detection mechanism. Its released flux does not appear to contain
events above expectations (Fig. 7).

It is clear that the two experimental methods are totally independent;
this is certainly an advantage since they address complementary features of
the shower development, but it implies that their systematics is completely
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Fig. 6. AGASA spectrum [2]

Fig. 7. HiRes spectrum compared with AGASA [11]
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different. So, unknown (relatively small) systematic errors have been invoked
to explain the difference: for instance the fluxes differ even below the GZK
threshold. This can be corrected but a residual, marginally significant differ-
ence remains,

It is clear that new data are badly needed. The new generation of ex-
periment has started with the design, construction and start of operations of
the Pierre Auger Observatory (PAO) [13]. The main aim of the experiment
is to reach a sensitive area more than one order of magnitude larger than
previous experiments, giving a unprecedented statistics, some thousands of
events around the GZK threshold. But also of fundamental importance is the
fact that the PAO employs both detection techniques (particle sampling and
fluorescence) of the previous conflicting experiments in its “hybrid” design
(Fig. 8).

The Observatory in its final form will have a sensitive area of 3500 square
km (comparable e.g. with the extension of the Rome province) with 1600
single detectors at a distance of 1.5 Km each other composing the Surface
Detector (SD). Moreover it will have 4 fluorescence telescopes (“eyes” of the
fluorescence detector, FD) that will cover the sensitive area of the SD (Fig. 9).
The coincident operation of the SD and FD, possible during clear, almost
moonless nights for an estimated fraction ≈15% of events will allow cross
check and cross correlation of both types of detection reducing their systematic
errors.

The experiment is in its5 building phase near Malargue (Argentina) in the
pampa, and, being of modular nature, has already started taking data: in fact
in its present form is already the largest area Cosmic Ray experiment ever
built. The final configuration should be reached in summer 2005, when the
first physics result will be presented.

Fig. 8. Conceptual idea of a hybrid de-
tector

Fig. 9. The extension of the Pierre
Auger experiment
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To have such a large number of single detectors and telescopes many tech-
nological problems had to be solved: for instance single surface detectors have
to be completely autonomous and are sun powered and no cables can be put
over such large distance, so data communication is wireless.

The distance between detectors and between telescopes also constrains
the sensitivity range of the Observatory: in fact to be reliably reconstructed a
shower must hit several SDs implying a relatively large low energy threshold
(above 1018 eV, although it might be possible to decrease it); the high energy
limit is dictated by statistics and possibly physics (the GZK threshold). A
last very important feature is the presence of various systems to monitor the
atmospheric transparency, fundamental for an exact reconstruction of energy
in FD detection.

The statistic per year of the events detected by this experiment are re-
ported in Table 1. It is important to notice that in principle one year of
operation of full Auger wold correspond to more than 10–30 years of ear-
lier experiments, allowing a clear definition of possible features of the flux,
and a study of possible correlations with astrophysical sources. More on the
expected results from Auger will be discussed in the conclusions.

Table 1. Number of expected events vs. energy

> 1019 > 51019 > 1020 eV

5000/y 500 50–100

4 The Particle Production Thresholds

Since the subject of these proceedings concerns possible phenomenological
effects of violations of Lorentz invariance we will briefly discuss here how
these violations can affect measurable quantities and what is their sensitivity.
This subject is described in a more systematic way in other reports, so we
will be very brief on this, while in Sect. 6 we will indulge in more radical
speculations. Also, we will restrict our considerations to processes connected
to relevant thresholds for UHECR physics, so will not discuss e.g. effects
related to variation of speed of light with energy.

In general, a departure from L.I. will introduce modifications in the invari-
ants, for instance in the (dispersion) relation between energy and momentum,
which we will assume in the general form (assuming rotational invariance)

E2 − p2 = µ2 = f(p, E, Λ) +m2 (2)
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where µ can be thought as an effective mass and Λ is a mass scale parame-
terizing departures from strict LI2, and m, possibly zero, is the rest mass of
the particle we are considering. It is clear that we expect strong effects when
f ≈ m2 and in particular in reactions in which the rest mass of involved par-
ticles as are generally threshold relations. For instance the LI value for the
GZK threshold is E ≈ mpmπ/ωCMB .

The modified dispersion relation can be thought as the norm of four-
momentum computed with metric experienced by a particle propagating in
the QG vacuum (which might depend on the 4-momentum of the particle):

gµν(E,p2, Λ)pµpν = g(m2) (3)

Clearly, gµν(E,p2, Λ) should be derived from the vacuum metric of Quantum
Gravity in some appropriate limit. It is not clear how to do it, however some
intuitive example can be given: for instance, if Planck mass (virtual) black
holes are relevant it is easy to derive that a particle of wave-length λ would
satisfy a modified dispersion relation

m2 ≈ (1 − lP
λ

)E2 − p2 ≈ E2 − p2 − lP |p|E2

which is of te form used above.
It is in general assumed that Λ ∝MPlanck so that, at the energies relevant

for UHECR propagation � MPlanck the precise form of f is not important,
only the first term in the Taylor expansion will affect kinematics, i.e.

E2 − p2 ≈ ±p
3

Λ
+m2

E2 − p2 ≈ ± p
4

Λ2
+m2

In this approach reaction thresholds are then computed in a single frame
(assumed the one with respect to which the CMBR is isotropic) assuming
energy momentum conservation. The results have been exposed in several
papers. For our purposes here it is only important to note that:

– Modifications of dispersion relations with the positive sign tend to move
the thresholds to lower energies. However they also in general produce the
decay of otherwise stable particles, and there are strong limits on them.

– On the contrary, the negative sign pushes the threshold to larger energies
and quickly to infinity.
It is interesting to estimate the sensitivity of CR experiments to these mod-
ifications. In the case of the GZK feature, if experiments will detect it at

2 This modification of the invariant dispersion relation is the most useful for the
purpose of computing physical effects on absorption thresholds. We expect that
also space-time invariants (i.e ds2) are modified, but it is not clear how these
would affect experimentally measurable quantities.
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an energy (say) within a factor 2 from the theoretical LI prediction very
stringent bounds on Λ will follow:

Λ > 103(1013)MPl (4)

where the figure in parentheses refers to the larger (cubic) modifications of
the dispersion relation.

5 Discussion: Phenomenology,
and: Will CR Experiments Detect Lorentz Violations?

Before passing to more speculative arguments it is useful to stop here and
discuss in these quite general grounds what will be the impact of the future
experimental results from e.g. the PAO. It is clear that we have two possible
cases:

1. the GZK feature will be found more or less at the expected energy. It is
tempting to claim that in this case LI would be verified at the levels quoted
above. There are however two caveats to take into account:
– It is very difficult to invent mechanisms to bring particles to such high

energies. It is not inconceivable that the number of possible sources dras-
tically decrease just around the GZK feature, although it does not seem
that there could be a physical connection between the GZK threshold
and the acceleration mechanisms.

– Lorentz invariance might not be violated but deformed [26]. This would
imply the possibility of (non-linear) frame transformations, modifications
of energy-momentum conservation and (unless in relatively contrived
models) very little effects on thresholds. This point is discussed in many
other reports. From an experimental point of view, at least for what
concerns UHECR propagation, it is in general difficult to distinguish
deformations for instance a la DSR, from strict LI.

It is however important to notice that the statistic collected by PAO will
allow to reconstruct in detail the form of the HECR spectrum at energies
below the GZK threshold, and this could change under different hypothe-
ses: in fact in general in the LI case a pile-up of events is expected just
below the threshold, produced by particles generated at high energies but
degraded from propagation in the CMBR, and this feature might be dif-
ferent in different scenarios.

2. The GZK break will not be present in the experimental data. Clearly this is
the possibility that would more stimulate speculations, however one should
be very cautious in conclusions for a fundamental reason:
– sources of UHECR are largely unknown. For instance it is entirely possi-

ble (although maybe unlikely) that sources of CR are local, or galactic:
young neutron stars can do it [27] if primaries are iron nuclei, or a nearby
extragalactic source might be responsible for the whole budget of events
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above GZK threshold with the conspiracy of a specific form of extra-
galactic magnetic field [28]. There is also the possibility that UHCRs are
not prodced in astrophysical sources, as in the so-called Top-Down mod-
els. In any way, in the case of strict LI, if UHECRs are known particles,
their origin, whatever might be, must be local.

However the perspectives are not so dark. It is important to remind that
the large statistic of PAO will allow a detailed analysis of the distribution
in sky of the events possibly detected above the GZK threshold. At these
energies deflection in the galactic magnetic field is quite small if primaries
are protons so in these case the events have to point to some extent to the
sources. Even in case of nuclei, a galactic origin should be discernible3.
A clear association with distant sources would be a unambiguous indication
that the propagation of particles in the Universe is not properly understood,
and this will imply violations of LI as a possible (strong) candidate for
explanation.

6 A More Speculative View:
Space-Time Indetermination

6.1 The Effect of Space-Time Fluctuations
on the Propagation of High Energy Particles

While electroweak and strong interactions propagate through space-time,
gravity turns out to be a property of the space-time itself. This simple state-
ment has profound implications in the quantization of gravity. Our belief
that gravity can be turned into a quantum theory immediately implies that
the structure of space-time has quantum fluctuations itself. Another way of
rephrasing this concept is that space-time is expected to have a granular (or
foamy) structure, where however the size of space-time cells fluctuates sto-
chastically, thereby causing an intrinsic uncertainty in the measurements of
space-time lengths, and indirectly of energy and momentum of a particle mov-
ing through space-time. The uncertainty appears on scales comparable with
the Planck scale (the quantization scale of gravity).

It is generally argued that measurements of distances (times) smaller than
the Planck length (time) are conceptually unfeasible, since the process of
measurement collects in a Planck size cell an energy in excess of the Planck
mass, hence forming a black hole, in which information is lost. This can be
translated in different ways into an uncertainty on energy-momentum mea-
surements [17, 18]. The Planck length is a good estimate of the uncertainty
in the De Broglie wave-length λ of a particle with momentum p. Therefore
δλ ≈ lP , and δp = δ(1/λ) ≈ (p2lP ) = (p2/MP ).

Speculating on the exact characteristics of the fluctuations induced by QG
is beyond the scope of the present paper, and it would probably be useless
3 PAO we should have some capability of distinguishing the nature of UHECRs.
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anyway, since the current status of QG approaches does not allow such a kind
of knowledge. We decided then to adopt a purely phenomenological approach,
in which some reasonable assumptions are made concerning the fluctuations
in the fabric of space-time, and their consequences for the propagation of
high energy particles are inferred. Comparison with experimental data then
possibly constrains QG models.

Following [17], we assume that in each measurement:

– the values of energy (momentum) fluctuate around their average values
(assumed to be the result theoretically recoverable for an infinite number
of measurements of the same observable):

E ≈ Ē + α
Ē2

MP
(5)

p ≈ p̄+ β
p̄2

MP
(6)

with α, β normally distributed variables and p the modulus of the 3-
momentum (for simplicity we assume rotationally invariant fluctuations);

– the dispersion relation fluctuates as follows:

Pµg
µνPν = E2 − p2 + γ

p3

MP
= m2 (7)

and γ is again a normally distributed variable.

Ideally, QG should predict the type of fluctuations introduced above, but,
as already stressed, this is currently out of reach, therefore we assume here
that the fluctuations are gaussian. Our conclusions are however not sensitive to
this assumption: essentially any symmetrical distribution with variance ≈1,
within a large factor, would give essentially the same results. Furthermore
we assume that α, β and γ are uncorrelated random variables; again, this
assumption reflects our ignorance in the dynamics of QG

The fluctuations described above will in general derive from metric fluc-
tuations of magnitude δgµν ∼ hµν lP

l [5, 18]. Our assumption reflects the fact
that, while the magnitude of the fluctuation can be guessed, we do not make
any assumption on its tensorial structure hµν .

Our interest will be now concentrated upon processes of the type

a+ b→ c+ d

where we assume that a kinematic threshold is present; in the realm of UHECR
physics (a,b) is either (γ, γ3K) or (p, γ3K) and (c,d) is (e+, e−) or (N,π).

To find the value of initial momenta for which the reaction occurs we write
down energy-momentum conservation equations and solve them with the help
of the dispersion relations, as discussed in detail in [7].
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The energy momentum conservation relations are (in the laboratory frame,
and specializing to the case in which the target (b) is a low energy background
photon for which fluctuations can be entirely neglected)

Ea + αa
E2

a

MP
+ ω = Ec + αc

E2
c

MP
+ Ed + αd

E2
d

MP
(8)

pa + βa
p2a
MP

− ω = pc + βc
p2c
MP

+ pd + βd
p2d
MP

. (9)

These equations refer to head-on collisions and collinear reaction products,
which is appropriate for threshold computations. Together with the modified
dispersion relations, these equations, after some manipulations, lead to a cubic
equation for the initial momentum as a function of the momentum of one of
products, and, after minimization, they define the threshold for the process
considered. In Fig. 10 we report the distribution of thresholds in the ≈70% of
cases in which the solution is physical; in the other cases the kinematics does
not allow the reaction.

Fig. 10. A shower impinging detector level. Both the lateral distribution and the
curvature of the front are not realistic

This threshold distribution can be interpreted in the following way: a par-
ticle with energy above ∼1015 eV has essentially 70% probability of being
above threshold, and therefore to be absorbed. In the other 30% of the cases
the protons do not interact.

In (8,9) the fluctuations are taken independently for each particle, which is
justified as long as the energies are appreciably smaller than the Planck energy.
At that point it becomes plausible that different particles experience the same
fluctuations, or more precisely fluctuations of the same region of space-time.
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It is instructive to consider this case in some more detail: we introduce then
the four-momenta (and dispersion relations) of all particles fluctuating in the
same way. Specializing to proton interaction on CMBR, the equation which
defines the threshold pth is [7]:

η
2p30

(m2
π + 2mπmp)MP

mπmp

(mπ +mp)2

(
pth

p0

)3

+
(
pth

p0

)

− 1 = 0 (10)

where η is a gaussian variable with zero average and variance of the order
of (but not exactly equal to) one, and p0 is the L.I. threshold (GZK). The
threshold is the positive solution of this equation.

The coefficient of the cubic term is very large, of the order of 1013 in this
case, so that unless η is O(10−13), we can write, neglecting pion mass

pth ≈ p0
(
m2

pMP

ηp30

) 1
3

. (11)

When η becomes negative, the above equation has no positive root; this hap-
pens essentially in 50% of the cases. Since the gaussian distribution is flat in a
small interval around zero, the distribution of thresholds for positive η peaks
around the value for η ≈ 1, meaning that the threshold moves almost always
down to a value of ≈1015 eV [7]; essentially the same result holds for fluctu-
ations affecting only the incident (highest energy) particle. For independent
fluctuations of final momenta, the asymmetry in the probability distribution
of allowed thresholds arises from the fact that even exceedingly small negative
values of the fluctuations lead to unphysical solutions.

Building upon our findings, we now apply the same calculations to the
case of UHECR protons propagating on cosmological distances. An additional
ingredient is needed to complete the dynamics of the process of photopion pro-
duction, namely the cross section. The rather strong assumption adopted here
is that the cross section remains the same as the Lorentz invariant one, pro-
vided the reaction is kinematically allowed. This implies that the interaction
lengths remain unchanged.

In order to assess the situation of UHECRs, we first consider the case of
particles above the threshold for photopion production in a Lorentz invariant
world. According with (8, 9), in this case particles have a probability of ≈30%
of being not kinematically allowed to interact inelastically with a photon in
the CMBR. Therefore, if our assumption on the invariance of the interac-
tion length is correct, then each proton is still expected to make photopion
production, although with a slightly larger path length.

The situation is however even more interesting for particles that are below
the Lorentz invariant threshold for the process of photopion production. If the
energy is below a few 1018 eV, a galactic origin seems to be in good agreement
with measurements of the anisotropy of cosmic ray arrival directions [29, 30].
We will not consider these energies any longer. On the other hand, at ener-
gies in excess of 1019 eV, cosmic rays are believed to be extragalactic protons,
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mainly on the ground of the comparison of the size of the magnetized region
of our Galaxy and the Larmor radius of these particles. We take these pieces
of information as the basis for our line of thought. If the cosmic rays observed
in the energy range E > 1019 eV are extragalactic protons, then our previous
calculations apply and we may expect that these particles have a ∼70% prob-
ability of suffering photopion production at each interaction with the CMB
photons, even if their energy is below the classical threshold for this process.
Note that the path length associated with the process is of the order of the
typical path length for photopion production (a few tens of Mpc), therefore we
are here discussing a dramatic process in which the absorption length of parti-
cles drops from Gpc, which would be pertinent to particles with energy below
∼1020 eV in a Lorentz invariant world, to several Mpc, with a corresponding
suppression of the flux. What are the consequences for the observed fluxes of
cosmic rays? The above result implies that all protons with E > 1015 eV are
produced within a radius of several tens of Mpc, and above this energy there
is no dramatic change of path length with energy. There is no longer anything
special about E ∼ 1020 eV, and any mechanism invoked to explain the flux of
super-GZK particles must be at work also at lower energies.

The basic situation remains the same in the case of pair production as the
physical process under consideration. For a source at cosmological distance,
a cutoff is expected due to pair production off the far infrared background
(FIR) or the microwave background. Using the results in [7] we expect that
the modified thresholds are a factor 0.06 (0.73) lower than the Lorentz in-
variant ones for the case of interaction on the CMBR (FIR). There is also a
small increase in the path lengths above the threshold, which would appear
exponentially in the expression for the flux. Therefore there are two effects
that go in opposite directions: the first moves the threshold to even lower en-
ergies, and the second increases the flux of radiation at Earth because of the
increase of the path length. It seems that geometry fluctuations do not pro-
vide an immediate explanation of the possible detection of particles in excess
of the expected ones from distance sources in the TeV region. In any case the
experimental evidence for such an excess seems at present all but established.

6.2 Astrophysical Observations

As discussed in the previous section fluctuations in the space-time metric may
induce a violation of Lorentz invariance that changes the thresholds for the
photopion production of a very high energy proton off the photons of the
CMBR, or for the pair production of a high energy gamma ray in the bath of
the FIR or CMBR photons.

For the case of UHECRs interacting with the CMBR, we obtained a picture
that changes radically our view of the effect of QG on this phenomenon, as
introduced in previous papers: not only particles with energy above ∼1020 eV
are affected by the fluctuations in space-time, but also particles with lower
energy, down to ∼1015 eV seem to be affected by such fluctuations. In fact
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the latter, as a result of a fluctuating space-time, may end up being above
the threshold for photopion production, so that particles may suffer signif-
icant absorption. Our conclusion is that all particles with energy in excess
of ∼1015 eV eventually detected at Earth would be generated at distances
comparable with the path length for photopion production (∼100 Mpc). A
consequence of this is that there is no longer anything special characterizing
the energy ∼1020 eV.

Since the conclusion reached in the previous section is quite strong, it is
important to summarize in detail some tests that may allow to understand
whether the current or future astrophysical observations are compatible with
the scenario discussed in this paper.

(a) Future experiments [13, 14] dedicated to the detection of UHECRs will
provide a substantial increase in the statistics, so that the spectral features of
the UHECRs in the energy region E > 1019 eV can be resolved, and further
indications on the nature of primaries and their possible extragalactic ori-
gin will be obtained. In particular the present possible disagreement between
AGASA [31] and HiRes [32] will be clarified.

One should also keep in mind that an evaluation of the expected flux
in terms of sources distributed as normal galaxies is in contradiction with
AGASA data by an amount ranging from 2 to 6σ depending on the assumed
source spectrum [25]. Since the nature of the sources is not known, it is not
clear if their abundance within the absorption path length is sufficient to
explain the observed flux in presence of space-time fluctuations, nor if they
can induce observable anisotropies.

In any case, in a Lorentz invariant framework a suppression in the flux
at ∼1020 eV is expected. If such a feature is unambiguously detected in the
UHECR spectrum, no much room would be left for the fluctuations of space-
time discussed in this paper, since in this scenario nothing special happens
around 1020 eV. In quantitative terms [7] this would imply a phenomenological
bound on lP now interpreted as a parameter: lP < 10−46 cm instead of lP ≈
10−33 cm; in other words, only fluctuations with variance ≈10−13, instead of
1, would be allowed4

(b) According with our findings, all particles with energy in excess of
∼1015 eV lose their energy by photopion production on cosmological spatial
scales, as a result of the metric fluctuations. This energy ends up mainly
in gamma rays, neutrinos and protons. The protons pile up in the energy
region right below ∼ 1015 eV. The gamma ray component actually generates
an electromagnetic cascade that ends up contributing low energy gamma rays,
in the energy band accessible to instruments like EGRET [35] and GLAST
[36]. This cascade flux cannot be larger than the measured electromagnetic
energy density in the same band ωexp

cas = 10−6 eV/cm3 [35]. The cascade flux

4 Alternatively, one can assume a more general form of fluctuations, i.e. δE ≈
E(E/MP )α and similar for momentum and dispersion relations [34]. In this case
the basic conclusions reached here remain unchanged.
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in our scenario can be estimated as follows. Let Φ(E) = Φ0(E/E0)−γ be
the emissivity in UHECRs (particles/cm3/s/GeV). Let us choose the energy
E0 = 1010 GeV and let us normalize the flux to the observations at the energy
E0. The total energy going into the cascade can be shown to be

ωcas ≈ 5 × 10−4

γ − 2
x2−γ

min ξ eV cm−3 ,

where ξ is the fraction of energy going into gamma rays in each photopion
production, and xmin = (Eth/E0) = 10−4 for Eth = 1015 eV. It is easy to see
that, for γ = 2.7, the cascade bound is violated unless ξ � 10−3.

One note of warning has to be sent concerning the development of the
electromagnetic cascade: the same violations of LI discussed here affect other
processes, as stressed in the paper. For instance pair production and pion
decay are also affected by violations of LI [26]. Therefore the possibility that
the cascade limit is exceeded concerns only those scenarios of violations of
LI that do not inhibit appreciably pair production and the decay of neutral
pions.

The protons piled up at energies right below 1015 eV, would be a nice
signature of this scenario, but it seems difficult to envision a way of detect-
ing these remnants. In fact, even a tiny magnetic field on cosmological scales
would make the arrival time of these particles to Earth larger than the age of
the universe. Moreover, even assuming an exactly zero extragalactic magnetic
field, these particles need to penetrate the magnetic field of our own Galaxy
and mix with the galactic cosmic rays, making their detection extremely prob-
lematic if not impossible.

Clearly a more detailed flux computation, taking into account propagation
of primaries as well as generation and propagation of the secondaries is needed
in order to assess in a more quantitative way observable effects of possible
metric fluctuations on UHECRs.

Let us conclude this section sending a note of warning concerning (11),
in this expression the dependence on the CMB photon energy is washed out
by the approximation done (we have neglected the pion mass). From the
physical point of view this corresponds to the appearance of an effective mass
(momentum dependent) of the proton due to the effect of fluctuations. The
effective mass of the proton may be responsible for the decay of this particle.
As we will discuss in the next section the possibility of a decaying proton
is a very stringent test for the fluctuations picture much powerful than the
astrophysical observations discussed in the present section.

6.3 A Fluctuating Space-Time can Make
the World Unstable

Let us discuss in this section the most striking test of the models that predict
energy and momentum fluctuations. We will discuss here the possibility that
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these fluctuations may induce particles decays otherwise impossible. This pos-
sibility, already discussed in the framework of non-fluctuating modifications
of the dispersion relation [21, 22], could in principle rule out the models with
fluctuations. In this section we will discuss the basic features of the decays,
leaving a detailed discussion of the implications and possible way out to the
next section.

We will consider three specific decay channels, that illustrate well, in our
opinion, the consequences of the quantum fluctuations introduced above. We
start with the reaction

p→ p+ π0

and we denote with p (p′) the momentum of the initial (final) proton, and with
k the momentum of the pion. Clearly this reaction cannot take place in the
reality as we know it, due to energy conservation. However, since fluctuations
have the effect of emulating an effective mass of the particles, it may happen
that for some realizations, the effective mass induced to the final proton is
smaller than the mass of the proton in the initial state, therefore allowing
the decay from the kinematical point of view. Since no conservation law or
discrete symmetry is violated in this reaction, it may potentially take place.
For the sake of clarity, it may be useful to invoke as an example the decay of
the ∆+ resonance, which is structurally identical to a proton, but may decay
to a proton and a pion according to the reaction ∆+ → p+ π0, since its mass
is larger than that of a proton. From the physical point of view, the effect
of the quantum fluctuations may be imagined as that of exciting the proton,
inducing a mass slightly larger than its own (average) physical mass.

Following the discussion of the previous sections we expect to find that
for momenta above a given threshold, depending on the value of the random
variables, the decay may become kinematically allowed. In general, the proba-
bility for this to happen has to be calculated numerically from the conservation
equations supplemented by the dispersion relations [37].

Although a full calculation is possible, it is probably more instructive to
proceed in a simplified way, in which only the fluctuations in the dispersion
relation of the particle in the initial state are taken into account. Neglecting
the corresponding fluctuations in the final state should not affect the conclu-
sions in any appreciable way, unless the fluctuations in the initial and final
states are correlated (we will return to this possibility at the end of Sect. 5).

In this approximation, the threshold for the process of proton decay to a
proton and a neutral pion can be written as follows (neglecting corrections to
order higher than p/MP ):

γ
2p3th
MP

− 2mπmp −m2
π = 0 , (12)

with solution

pth =
(

(2mpmπ +m2
π)MP

2γ

) 1
3

. (13)
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For negative values of γ, the above equation has no positive root; this happens
in 50% of the cases. Since the gaussian distribution is essentially flat in a small
interval around zero, the distribution of thresholds for positive γ (i.e. in the
remaining 50% of the cases) peaks around the value for γ ≈ 1, meaning
that the threshold moves almost always down to a value of ≈1015 eV [7, 20];
essentially the same result holds for generic fluctuations (i.e. not confined to
the dispersion relations) affecting only the incident particle, namely the one
with the highest energy [37].

The reason why the effects of fluctuations are expected to occur at such low
energies is that starting from that energy region the fluctuation term becomes
comparable with the rest mass of the particle. In fact the same concept of rest
mass of a particle may lose its traditional meaning at sufficiently high energies
[19].

It can be numerically confirmed that independent fluctuations of momenta
(and/or of the dispersion relations) of the decay products are more likely
to make the decay easier rather than more difficult, due to the non linear
dependence of the threshold on the strength of fluctuations: the probability
that the decay does not take place is in fact ≈30%. In the remaining cases, the
decay will occur if the momentum of the initial proton is larger than pth[37].
The distribution of pth is essentially identical to the one reported in Sect. 2
for the photopion production.

All the discussion reported so far remains basically unchanged if similar
reactions are considered. For instance the reaction p → π+n is kinematically
identical to the one discussed above. For all these reactions, we expect that
once they become kinematically allowed, the energy loss of the parent baryon
is fast. For the case of nuclei, all the decays that do not change the nature
of the nucleon leave (A,Z) unchanged, so we do not expect any substantial
blocking effect in nuclei.

Another reaction that may be instructive to investigate is the spontaneous
pair production from a single photon, namely [37]

γ → e+e−.

In this case, following the calculations described above, we obtain the following
expression for the threshold:

p′th =
(

4m2
eMP

2γ′

) 1
3

, (14)

and p′th is of the order of 1013 eV. Again, if the reaction becomes kinematically
allowed, there does not seem to be any reason why the reaction should not
take place with a rate dictated by the typical cross section of electromagnetic
interactions.

Finally, we propose a third reaction that in its simplicity may represent
the clearest example of reactions that should occur in a world in which quan-
tum fluctuations behave in the way described above. Let us consider a proton
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that moves in the vacuum with constant velocity, and let us consider the el-
ementary reaction of spontaneous photon emission. In the Lorentz invariant
world the process of photon emission is known to happen only in the presence
of an external field that may provide the conditions for energy and momen-
tum conservation. However, in the presence of quantum fluctuations, one can
think of the gravitational fluctuating field as such an external field, so that
the particle can in fact radiate a photon without being in the presence of a nu-
cleus or some other external recognizable field. The threshold for this process,
calculated following the above procedure, is

p′′th ≈
(
m2MPω

γ′′

) 1
4

, (15)

where ω is the energy of the photon. This threshold approaches zero when
ω → 0: for instance, if ω = 1 eV, then pth ≈ 300 GeV for protons and
pth ≈ 45 GeV for electrons. In other words there should be a sizable energy
loss of a particle in terms of soft photons. This process can be viewed as a
sort of bremsstrahlung emission of a charged particle in the presence of the
(fluctuating) vacuum gravitational potential.

Based on the arguments provided in this section, it appears that all par-
ticles that we do know are stable in our world, should instead be unstable at
sufficiently high energy, due to the quantum fluctuations described above. In
the next section we will take a closer look at the implications of the existence
of these quantum fluctuations, and possibly propose some plausible avenues
to avoid these dramatic conclusions.

6.4 Discussion

If the decays discussed in the previous section could take place, our universe,
at energies above a few PeV or even at much lower energies might be unstable,
nothing like what we actually see. The decays

nucleon→ nucleon+ π

would start to be kinematically allowed at energies that are of typical concern
for cosmic ray physics, while the spontaneous emission of photons in vacuum
might even start playing a role at much lower energies, testable in laboratory
experiments. Without detailed calculations of energy loss rates it is difficult
to assess the experimental consequences of this process.

For the nucleon decay, the situation is slightly simpler if we assume that
the quantum fluctuations affect only the kinematics but not the dynamics, an
assumption also used in in the photopion production study [20]. In this case
one would expect the proton to suffer the decay to a proton and a pion on a
time scale of the same order of magnitude of typical decays mediated by strong
interactions. This would basically cause no cosmic ray with energy above
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∼1015 eV to be around, something that appears to be in evident contradiction
with observations5.

In the following we will try to provide a plausible answer to these three
very delicate questions:

1. If the particles were kinematically allowed to decay, and there were no
fundamental symmetries able to prevent the decay, would it take place?

2. Is the form adopted for the quantum fluctuations correct and if so, how
general is it?

3. If in fact the form adopted for the fluctuations is correct, how general and
unavoidable is the consequence that (experimentally) unobserved decays
should take place?

Although the result that particles are kinematically allowed to decay is
fairly general, the (approximate) lack of relativistic invariance forbids the
computation of life-times6. Two comments are in order: first, the phase space
for the decays described above, as calculated in the laboratory frame, is non
zero and in fact it increases with the momentum of the parent particle. The
effect of fluctuations can be seen as the generation of an effective (mass)2 ∝
p3/MP . A similar effect, although in a slightly different context, was noted in
[6].

Second, we do not expect dynamics to forbid the reactions: one must keep
in mind that we are considering very small effects, at momenta much smaller
than the Planck scale. For instance the gravitational potential of the vacuum
fluctuations is expected to move quarks in a proton to excited levels, not to
change its content, nor the properties of strong interactions.

There is a subtler possibility, which must be taken very seriously in our
opinion, since it might invalidate completely the line of thought illustrated
above, namely that the quantum fluctuations of the momenta of the parti-
cles involved in a reaction occur on time scales that are enormously smaller
than the typical interaction/decay times. This situation might resemble the so
called Quantum Zeno paradox, where continuously checking for the decay of
an unstable particle effectively impedes its decay. This possibility is certainly
worth a detailed study, that would however force one to handle the intrica-
cies of matter in a Quantum Gravity regime. We regard this possibility as
the most serious threat to the validity of the arguments in favor of quantum
fluctuations discussed in this paper and in many others before it.

Let us turn out attention toward the question about the correctness and
generality of the form adopted for the momentum fluctuations. It is generally
accepted that the geometry of space-time suffers profound modifications at
5 From a phenomenological point of view, consistency with experiments would re-

quire either that the variance of the fluctuations considered above is ridiculously
small (<10−24) or, allowing more generic fluctuations ∆l ∝ lP (lP /l)α, that a
fairly large value for α should be adopted [20].

6 In fact life-times can be in principle estimated in approaches in which it is possible
to make transformations between frames [19, 38, 39], despite the lack of LI.
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length (time) scales of the order of the Planck length (time), and that this leads
to the emergence of a minimum measurable length. This may be reflected in a
non commutativity of space-time and in a generalized form of the uncertainty
principle.

The transition from uncertainty in the length or time scales to uncertainty
in momenta of particles is undoubtedly more contrived and deserves some
attention. The expressions in (5, 6) and (7) have been motivated in various
ways [16, 17, 19, 20, 41] in previous papers. For instance, the condition∆l ≥ lP
seems to imply the following constraint on wavelengths ∆λ ≥ lP , otherwise
it would be possible to design an experimental set-up capable of measuring
distances with precision higher than lP . Therefore ∆p ∝ ∆(λ−1) ∝ lP p

2.
Similar arguments have been proposed, all based to some extent on the de
Broglie relation p ∝ λ−1.

There is certainly no guarantee that the de Broglie relation continues to
keep its meaning in the extreme conditions we are discussing, in particular in
models in which the coordinates and coordinate-momentum commutators are
modified with respect to standard quantum mechanics and the representation
of momentum in terms of coordinate derivatives generally fails. For instance in
a specific (although non-relativistic) example [40] the existence of a minimum
length is shown to imply that

p =
2
πlP

tan
(
πlP
2λ

)

. (16)

In other words, the de Broglie relation may be modified in such a way that
a minimum wavelength corresponds to an unbound momentum. Notice, how-
ever, that we are considering here the effects of these modifications at length
scales much larger than the Planck scale, where the correction is likely to be
negligible. In general, if p ∝ λ−1g(lP /λ) then ∆p ∝ lP p2 + p O(l2P p

2). Hence,
we do not expect that the result shown in the previous Section is appreciably
modified.

Last but not least we notice that the fluctuations in the dispersion relations
can be easily derived from fluctuations of the (vacuum) metric in the form
given in [41]:

ds2 = (1 + φ)dt2 − (1 + ψ)dr2 (17)

where φ, ψ are functions of the position in space-time.
The fluctuations of the dispersion relation, (7), follow if φ �= ψ (i.e. non

conformal fluctuations), assuming at least approximate validity of the de
Broglie relation; if φ = ψ a much milder modification (O(pm2/MP )) follows.

Having given plausibility arguments in favor of the form adopted for the
fluctuations, at least for the case of non conformal fluctuations, we are left
with the goal of proving an answer to the last question listed above, namely
does a decay actually occur once it is kinematically allowed? Certainly the
answer is positive if one continues to assume momentum and energy conser-
vation, and modifications of these conservation laws with random terms of
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order O(p2/MP ) do not change this conclusion. The question then is whether
we are justified in assuming energy and momentum conservation in the form
used above. For instance, in the so-called Doubly Special Relativity (DSR)
[38], theories and in general in models with deformed Poincaré invariance, the
conservation relations may be modified in a non trivial way.

This certainly makes the probability of being above threshold smaller, but
not zero if fluctuations are uncorrelated. However in order to qualitatively
modify our results this probability should be in fact vanishingly small. For
the case of low energy cosmic rays, this probability should be of the order
of a typical decay time divided by the residence time of cosmic rays (mostly
galactic at these energies) in our Galaxy.

We are led to conclude that allowing for modifications of the conservation
relations does not appear to improve the situation to the point that the strong
conclusions derived in the previous section can be avoided. In the same per-
spective, cancellation between fixed modifications of the dispersion relation
and fluctuations (of the same order of magnitude) does not seem a viable way
to proceed.

It is important however to notice that we have considered the above fluctu-
ations as independent. In a full theory one should take into account possible
correlations between fluctuations. The effect of correlations is very impor-
tant because it pushes to higher energies the fluctuation scale of the particle
momentum (energy). Let us discuss in more detail this point. Quantum fluc-
tuations of the momenta of the particles involved in a reaction occur on time
scales that are much smaller than the typical interaction time. Particles during
the interaction time experience a large number of fluctuations, typically

N =
τ

τP
=

1
pτP

=
MP

p
,

where we have used τ ∼ 1/p for the interaction time scale and τP ∼ 1/MP for
the fluctuation time scale. Assuming independent fluctuations of energy and
momentum the fluctuation variance σ will be

σ2 =
p3

MP

√
N

=
p3

MP

(
p

MP

)1/2

,

and the fluctuation variance becomes of the order of the proton mass σ � mp

already at momentum p � 1017 eV. In this case the situation resembles as
discussed above and, for instance, the decaying of the proton arises already at
lower energies. Let us consider now the case in which there is some degree of
correlation in the momentum (energy) fluctuations. In this case the fluctuation
variance σ will be

σ2 =
p3

MPNα
=
p3

MP

(
p

MP

)α

,

where we have introduced the exponent α > 1/2 that parameterizes the effect
of correlations. In this case the fluctuation variance becomes of the order of
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the proton mass at larger energies, namely σ � mp at momentum of the order
of

p �MP

(
mp

MP

) 2
3+α

.

A detailed analysis of possible correlations between fluctuations, namely
an analytic determination of α, is impossible at this stage because it implies
a better knowledge of the theory, and in particular of the dynamics of the QG
regime.

Finally, a separate discussion is needed for those theories that include the
relativity principle (exemplified by DSR models). The DSR theories are char-
acterized by an extended Lorentz invariance [38] with two separate invariant
scales: the light velocity and the Planck length. Moreover, in the low energy
limit of DSR, or for distances much larger than the Planck length, the usual
Lorentz invariance is recovered.

Using these two characteristics of the DSR theories it is easy to prove
that particle kinematics in DSR is the same as in the usual Lorentz invariant
theories. This result holds in the case in which there are no fluctuations of
energy and momentum. In the most general case in which fluctuations of
energy and momentum are taken into account it is difficult to prove that the
situation remains unchanged. Nevertheless, if in DSR the relativity principle
remains at work also in the fluctuating case the DSR approach seems the most
promising in order to escape the particles decays discussed in this paper that
seems to invalidate all the other models.
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1 General Questions on Quantum Gravity

It is not clear at all what is the problem in quantum gravity (cf. [3] or [8] for
general reviews, written in the same spirit as the present one). The answers
to the following questions are not known, and I believe it can do no harm to
think about them before embarking in a more technical discussion.

To begin, it has been proposed that gravity should not be quantized, owing
to its special properties as determining the background on which all other
fields propagate. There is a whole line of thought on the possibility that gravity
is not a fundamental theory, and this is certainly an alternative one has to
bear in mind. Indeed, even the holographic principle of G. ’t Hooft, to be
discussed later, can be interpreted in this sense.

Granting that, the next question is whether it does make any sense to
consider gravitons propagating in some background; that is, whether there is
some useful approximation in which there is a particle physics approach to the
physics of gravitons as quanta of the gravitational field. A related question
is whether semiclassical gravity, i.e., the approximation in which the source
of the classical Einstein equations is replaced by the expectation value of the
energy momentum tensor of some quantum theory has some physical [22]
validity in some limit. We shall say more on this problems towards the end.

At any rate, even if it is possible at all, the at first sight easy problem of
graviton interactions in an otherwise flat background has withstood analysis of
several generations of physicists. The reason is that the coupling constant has
mass dimension −1, so that the structure of the perturbative counterterms
involve higher and higher orders in the curvature invariants (powers of the
Riemann tensor in all possible independent contractions), schematically,

S =
1

2κ2
R

∫
R+

∫
R2 + κ2

R

∫
R4 + . . . (1)

Nobody knows how to make sense of this approach, except in one case, to be
mentioned later on.

E. Alvarez: Quantum Gravity, Lect. Notes Phys. 669, 31–58 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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It could be possible, sensu stricto to stop here. But if we believe that quan-
tum gravity should give answers to such questions as to the fate of the initial
cosmological singularity, its is almost unavoidable to speak of the wave func-
tion of the universe. This brings its own set of problems, such as to whether
it is possible to do quantum mechanics without classical observers or whether
the wave function of the Universe has a probabilistic interpretation. Para-
phrasing C. Isham [38], one would not known when to qualify a probabilistic
prediction on the whole Universe as a successful one.

The aim of the present paper is to discuss in some detail established re-
sults on the field. In some strong sense, the review could be finished at once,
because there are none. There are, nevertheless, some interesting attempts,
which look promising from certain points of view. Perhaps the two approaches
that have attracted more attention have been the loop approach, on the one
hand and strings on the other. We shall try to critically assess prospects in
both. Interesting related papers are [34, 59].

Even if for the time being there is not (by far) consensus on the scientific
community of any quantum gravity physical picture, many great physicist
have not been able to resist the temptation of working (usually only for a
while) on it. This has produced a huge spinoff in quantum field theory; to
name only a few, constrained quantization, compensating ghosts, background
field expansion and topological theories are concepts or techniques first devel-
oped in thinking about these problems, and associated to the names of Dirac,
Pauli, Weinberg, Feynman, De Witt, Witten etc. In many cases, more or less
surprising relationships have been found with quantum gauge theories. There
are probably more in store, if one is to judge from the success of the partial
implementation of holographic ideas in Maldacena’s conjecture (more on this
later).

This should be kept into account when reading the references. We have
not attempted to be comprehensive, and we have used only the references
familiar to us; but in some of the references, in particular in our own review
article of 1989 ([3] there are more entry points into the vast literature. After
all, paraphrasing Feynman, we still do not know what could be relevant in a
field until the main problems are solved.

2 The Issue of Background Independence

One of the main differences between both attacks to the quantum gravity
problem is the issue of background independence, by which it is understood
that no particular background should enter into the definition of the theory
itself. Any other approach is purportedly at variance with diffeomorphism
invariance.

Work in particle physics in the second half of last century led to some
understanding of ordinary gauge theories. Can we draw some lessons from
there?
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Gauge theories can be formulated in the background field approach, as
introduced by B. de Witt and others (cf. [20]). In this approach, the quantum
field theory depends on a background field, but not on any one in particular,
and the theory enjoys background gauge invariance.

Is it enough to have quantum gravity formulated in such a way?1

It can be argued that the only vacuum expectation value consistent with
diffeomorphisms invariance is

〈0|gαβ |0〉 = 0 (2)

in which case the answer to the above question ought to be in the negative,
because this is a singular background and curvature invariants do not make
sense. It all boils down as to whether the ground state of the theory is diffeo-
morphism invariant or not. There is an example, namely three-dimensional
gravity in which invariant quantization can be performed [70]. In this case at
least, the ensuing theory is almost topological.

In all attempts of a canonical quantization of the gravitational field, one
always ends up with an (constraint) equation corresponding physically to the
fact that the total hamiltonian of a parametrization invariant theory should
vanish. When expressed in the Schrödinger picture, this equation is often
dubbed the Wheeler-de Witt equation. This equation is plagued by operator
ordering and all other sorts of ambiguities. It is curious to notice that in
ordinary quantum field theory there also exists a Schrödinger representation,
which came recently to be controlled well enough as to be able to perform
lattice computations [42].

Gauge theories can be expressed in terms of gauge invariant operators, such
as Wilson loops . They obey a complicated set of equations, the loop equations,
which close in the large N limit as has been shown by Makeenko and Migdal
[43]. These equations can be properly regularized, e.g. in the lattice. Their
explicit solution is one of the outstanding challenges in theoretical physics.
Although many conjectures have been advanced in this direction, no definitive
result is available.

3 The Canonical Approach

It is widely acknowledged that there is a certain tension between a (3 + 1)
decomposition implicit in any canonical approach, privileging a particular
notion of time, and the beautiful geometrical structure of general relativity,
with its invariance under general coordinate transformations.

Let us now nevertheless explore how far we can go on this road, following
the still very much worth reading work of De Witt [20].

1 This was, incidentally, the way G. Hooft and M. Veltman did the first complete
one-loop calculation [65].
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n

ξ

Fig. 1. Spacelike surface of codimension one

If (Fig. 1) we are given a spacelike surface (which will represent physically
all spacetime events to which it will be assigned a fixed time), say

yα = fα(xi)

The tangent vector to the surface are

ξi ≡ ∂if
α∂α

and the induced metric (that is, the pull-back to the surface of the spacetime
metric) is

hij ≡ gαβξ
α
i ξ

β
j

The unit normal is then defined as;

gαβn
αξβi = 0

n2 ≡ gαβn
αnβ = 1

We are interested now in a set of such surfaces which covers all spacetime;
that is, a foliation of (a portion of) the spacetime; namely a one-parameter
family of spacelike disjoint hypersurfaces

Σt ≡ {yα = fα(xi, t)}

In a classical analysis Arnowitt, Deser and Misner (ADM) [1] characterized
the embedding via two functions: the lapse and the shift : we first define the
vector (see Fig. 2)

Nα ≡ ∂fα

∂t

in terms of which the lapse, N , is just the projection in the direction of the
normal, and the shift, Ni the (three) projections tangent to the hypersurface.

Nα = Nnα +N iξαi
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T Nn α Nα
i

TN ξ
i

α

(x,t)

(x,t +dt) 

(x+dx,t)

(x+dx,t+dt)

Fig. 2. ADM lapse and shift variables

All this amounts to a particular splitting of the full spacetime metric:

ds2 = gαβdx
αdxβ = gαβdf

αdfβ

= gαβ(Nαdt+ ξαi dx
i)(Nβdt+ ξβj dx

j)

= N2dt2 + hjk(N jdt+ dxj)(Nkdt+ dxk)

or, what is the same,
gµν = hijξiµξjν + nµnν

All surfaces which are equivalent from the intrinsic point of view, can be
however embedded differently; the extrinsic curvature discriminates between
them:

Kij = −ξαi ∇ρnαξ
ρ
j

The Gauss-Codazzi equations relate intrinsic curvatures associated with
the intrinsic geometry in the hypersurface with spacetime curvatures precisely
through the extrinsic curvature:

R[h]lijk = R[g]αβσρξ
α
l ξ

β
i ξ

σ
j ξ

ρ
k −KijKlk +KikKlj (3)

and
∇[h]kKij −∇[h]jKik = Rαβσρn

αξβi ξ
ρ
j ξ

σ
k (4)

whereas the curvature scalar is given by

R = Rαβ
αβ = 2Rni

ni +Rij
ij (5)

In terms of this splitting, the Einstein-Hilbert action reads:

LEH ≡ √
gR[g] = N

√
h(R[h] +KijK

ij −K2) − ∂αV
α (6)

with
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V α = 2
√
g(nβ∇βn

α − nα∇βn
β)

Primary constraints appear when defining canonical momenta:

pµ ≡ ∂L

∂Ṅµ

∼ 0

the momenta conjugate to the spatial part of the metric is:

πij ≡ δL

δḣij

= −h1/2(Kij −Khij)

The canonical commutation relations yield:

{πij(x), hkl(x ′)} = −δ(x,x ′)
1
2
(δikδ

j
l + δjkδ

i
l )

The total Hamiltonian reads

H ≡
∫
d3x(πµṄ

µ + πij ḣij − L) =
∫
d3x(NH +N iHi)

where

H(h, π) = h−1/2

(

πijπ
ij − 1

2
π2

)

− h1/2R[h] (7)

and
Hi(h, π) = −2hik∂jπ

kj − (2∂jhki − ∂ihkj)πkj = −2∇[h]jπi
j (8)

The system of constraints is now consistent (that is, that the classical time
evolution of the constraints is still a linear combination of constraints):

ṗµ = {pµ,H} = (H,Hi) ∼ 0

Second class constraints
Nµ = fµ

can now be imposed. The whole hamiltonian analysis boils down to the two
constraint equations

H = 0
Hi = 0

Much of the preceding analysis is actually quite generic for generally covariant
systems. The full set of constraints obeys the Dirac-Schwinger algebra

{H(x),H(y)} = [Hi(x) + Hi(y)]∂iδ(x,y)
{Hi(x),H(y)} = H(x)∂iδ(x,y)
{Hi(x),Hj(y)} = Hi(y)∂jδ(x,y) + Hj(x)∂iδ(x,y) (9)

which is nothing else than the Σ-projected algebra of the Diff(M) group.
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Usually no reduction is made on the dynamical variables of the system,
which amounts to keep hij , π

ij as (redundant) quantum variables. It is not
clear how singular metrics can be avoided, because it is not easy to impose
the condition that the metric is a positive definite operator.

Physical states in the Hilbert space are provisionally defined à la Dirac

Ĥ|ψ〉 = 0
Ĥi|ψ〉 = 0

It has been realized since long that this whole approach suffers from the
frozen time problem, i.e., the Hamiltonian reads

H ≡
∫
d3x(NH +N iHi)

so that acting on physical states

Ĥ|ψ〉 = 0 (10)

in such a way that Schrödinger’s equation

i
∂

∂t
|ψ〉 = Ĥ|ψ〉 (11)

seemingly forbids any time dependence.
There are many unsolved problems in this approach, which has been kept

at a formal level. The first one is an obvious operator ordering ambiguity owing
to the nonlinearity. In the same vein, it is not clear whether it is possible to
make the constraints hermitian. Besides, it is not clear that one recovers the
full Diff invariance from the Dirac-Schwinger algebra. Actually, it is not known
whether this is necessary; that is, what is the full symmetry of the quantum
theory.

We can proceed further, still formally2, using the Schrödinger representa-
tion defined in such a way that

(ĥijψ)[h] ≡ hij(x)ψ[h] (12)

and
(π̂ijψ)[h] ≡ −i� δψ

δhij(x)
[h] (13)

If we assume that diffeomorphisms act on wave functionals as:

ψ[f∗h] = ψ[h] (14)

then the whole setup for the quantum dynamics of the gravitational field lies
in Wheeler’s superspace (nothing to do with supersymmetry) which is the
2 It is bound to be formal as long as the problem of the infinities is not fully

addressed. We know from the analysis of this representation for gauge theories in
the lattice that those are the most difficult problems to solve.
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set of three-dimensional metrics modulo three-dimensional diffs: Riem(Σ)/
Diff(Σ).

The Hamiltonian constraint then implies the famous Wheeler-De Witt
equation.

− �
22κ2Gijkl

δ2ψ

δhikδhjl
[h] − h

2κ2
R(3)[h]ψ[h] = 0 (15)

where the De Witt tensor is:

Gijkl ≡ 1√
h

(

hijhkl − 1
2
hikhjl

)

(16)

Needless to say, this equation, suggestive as it is, is plagued with ambiguities.
The manifold of positive definite metrics has been studied by De Witt. He
showed that it has signature (−1,+15), where the timelike coordinate is given
by the breathing mode of the metric:

ζ =

√
32
3
h1/4 (17)

and in terms of other five coordinates ζa orthogonal to the timelike coordinate,
the full metric reads

ds2 = −dζ2 +
3
32
ζ2gabdζ

adζb (18)

with
gab = tr h−1∂ahh

−1∂h (19)

The five dimensional submanifold with metric gab is the coset space

SL(3,R)/SO(3) (20)

It has been much speculated whether the timelike character of the dilatations
lies at the root of the concept of time. The Wheeler-De Witt equation can be
written in a form quite similar to the Klein-Gordon equation:

(

− ∂2

∂ζ2
+

32
3ζ2
gab∂a∂b +

3
32
ζ2R(3)

)

Ψ = 0 (21)

The analogy goes further in the sense that also here there is a naturally
defined scalar product which is not positive definite:

(ψ, χ) ≡
∫

Σ

ψ∗dΣijGijkl
δχ

iδhkl
− χ∗dΣijGijkl

δψ

iδhkl
(22)
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4 Using Ashtekar and Related Variables

The whole philosophy of this approach is canonical, i.e., an analysis of the
evolution of variables defined classically through a foliation of spacetime by
a family of spacelike three-surfaces Σt. The standard choice in this case as
we have just reviewed, is the three-dimensional metric, gij , and its canonical
conjugate, related to the extrinsic curvature.

Here, as in any canonical approach the way one chooses the canonical
variables is fundamental.

Ashtekar’s clever insight started from the definition of an original set of
variables [10] stemming from the Einstein-Hilbert lagrangian written in the
form3

S =
∫
ea ∧ eb ∧Rcdεabcd (23)

where ea are the one-forms associated to the tetrad,

ea ≡ eaµdxµ. (24)

Tetrads are defined up to a local Lorentz transformation

(ea)′ ≡ La
b(x)eb (25)

The associated SO(1, 3) connection one-form ωa
b is usually called the spin

connection. Its field strength is the curvature expressed as a two form:

Ra
b ≡ dωa

b + ωa
c ∧ ωc

b . (26)

Ashtekar’s variables are actually based on the SU(2) self-dual connection

A = ω − i ∗ ω (27)

Its field strength is
F ≡ dA+A ∧A (28)

The dynamical variables are then (Ai, E
i ≡ F 0i). The main virtue of these

variables is that constraints are then linearized. One of them is exactly anal-
ogous to Gauss’law:

DiE
i = 0 . (29)

There is another one related to three-dimensional diffeomorphisms invariance,

tr FijE
i = 0 (30)

and, finally, there is the Hamiltonian constraint,

trFijE
iEj = 0 (31)

3 Boundary terms have to be considered as well. We refer to the references for
details.
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On a purely mathematical basis, there is no doubt that Astekhar’s vari-
ables are of a great ingenuity. As a physical tool to describe the metric of
space, they are not real in general. This forces a reality condition to be im-
posed, which is awkward. For this reason it is usually preferred to use the
Barbero-Immirzi [13, 37] formalism in which the connection depends on a free
parameter, γ,

Ai
a = ωi

a + γKi
a (32)

ω being the spin connection and K the extrinsic curvature. When γ = i
Astekhar’s formalism is recovered; for other values of γ the explicit form of
the constraints is more complicated. Thiemann [67] has proposed a form for
the Hamiltonian constraint which seems promising, although it is not clear
whether the quantum constraint algebra is isomorphic to the classical algebra
(cf. [54]). A comprehensive reference is [66].

Some states which satisfy the Astekhar constraints are given by the loop
representation, which can be introduced from the construct (depending both
on the gauge field A and on a parameterized loop γ)

W (γ,A) ≡ tr Pe
∮

γ
A (33)

and a functional transform mapping functionals of the gauge field ψ(A) into
functionals of loops, ψ(γ):

ψ(γ) ≡
∫

DAW (γ,A)ψ(A) (34)

When one divides by diffeomorphisms, it is found that functions of knot classes
(diffeomorphisms classes of smooth, non self-intersecting loops) satisfy all the
constraints.

Some particular states sought to reproduce smooth spaces at coarse grain-
ing are the weaves. It is not clear to what extent they also approach the
conjugate variables (that is, the extrinsic curvature) as well.

In the presence of a cosmological constant the hamiltonian constraint
reads:

εijkE
aiEbj

(

F k
ab +

λ

3
εabcE

ck

)

= 0 (35)

A particular class of solutions of the constraint [60] are self-dual solutions of
the form

F i
ab = −λ

3
εabcE

ci (36)

Kodama [41] has shown that the Chern-Simons state

ψCS(A) ≡ e 3
2λ SCS(A) (37)

is a solution of the hamiltonian constraint. He even suggested that the sign
of the coarse grained, classical cosmological constant was always positive,
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irrespectively of the sign of the quantum parameter λ, but it is not clear
whether this result is general enough. There is some concern [71] that this state
as such is not normalizable with the usual norm. It has been argued that this
is only natural, because the physical relevant norm must be very different from
the näıve one (cf. [59]) and indeed normalizability of the Kodama state has
been suggested as a criterion for the correctness of the physical scalar product
(cf. for example the discussion in [24]) or else that a Euclidean interpretation
could be given to it.

Loop states in general (suitable symmetrized) can be represented as spin
network [56] states: colored lines (carrying some SU(2) representation) meet-
ing at nodes where intertwining SU(2) operators act. A beautiful graphical
representation of the group theory has been successfully adapted for this pur-
pose. There is a clear relationship between this representation and the Turaev-
Viro [68] invariants. Many of these ideas have been foresighted by Penrose (cf.
[48]).

There is also a path integral representation, known as spin foam (cf. [12]),
a topological theory of colored surfaces representing the evolution of a spin
network. These are closely related to topological BF theories, and many in-
dependent generalizations have been proposed. Spin foams can also be con-
sidered as an independent approach to the quantization of the gravitational
field [14].

In addition to its specific problems, this approach shares with all canon-
ical approaches to covariant systems the problem of time. It is not clear its
definition, at least in the absence of matter. Dynamics remains somewhat mys-
terious; the hamiltonian constraint does not say in what sense (with respect
to what) the three-dimensional dynamics evolve.

4.1 Big Results of this Approach

One of the main successes of the loop approach is that the area (as well as the
volume) operator is discrete. This allows, assuming that a black hole has been
formed (which is a process that no one knows how to represent in this setting),
to explain the formula for the black hole entropy . The result is expressed in
terms of the Barbero-Immirzi parameter [57]. The physical meaning of this
dependence is not well understood.

It has been pointed out [15] that there is a potential drawback in all
theories in which the area (or mass) spectrum is discrete with eigenvalues An if
the level spacing between eigenvalues δAn is uniform because of the predicted
thermal character of Hawking’s radiation. The explicit computations in the
present setting, however, lead to a space between (dimensionless) eigenvalues

δ An ∼ e−
√

An , (38)

which seemingly avoids this set of problems.
It has also been pointed out that [23] not only the spin foam, but almost

all other theories of gravity can be expressed as topological BF theories with
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constraints. While this is undoubtedly an interesting and potentially useful
remark, it is important to remember that the difference between the linear
sigma model (a free field theory) and the nonlinear sigma models is just a
matter of constraints. This is enough to produce a mass gap and asymptotic
freedom in appropriate circumstances.

5 Euclidean Quantum Gravity

It can be boldly asserted that just by analogy with ordinary quantum field
theory, the wave functional of quantum gravity must be given by:

ψ[h] ≡
∫

g(∂M)=h

Dge−SE [g] (39)

where we integrate over all riemannian metrics that obey the relevant bound-
ary conditions, and the Einstein-Hilbert action has to be supplemented with
boundary terms. This approach is problematic from the very beginning, due
to the fact that the Wick analytic continuation of a lorentzian space-time is
not riemannian in general (not even real), so that the whole setup seems to
demand the study of real sections in a complex formulation. The point of view
put forward by Hawking and collaborators [32] is that the needed analytical
continuations could be hopefully made after Green’s functions are evaluated.

There however is a well-known mathematical theorem of Markov (ex-
plained for physicists in [5]) asserting that there is no algorithmic way of
predicting when two arbitrary manifolds are homeomorphic: M1 ∼ M2. The
problem stems essentially from the fundamental group: any finitely presented
group can be the π1(M) of a four-dimensional manifold, M . So one proof of
the result is to simply write down a family of groups Gk such that we cannot
algorithmically recognisee when G = {e}. There are, in addition, further sub-
tleties with the diffeomorphism class in d = 4: there is a uncountable set of
non equivalent differentiable structures in R

4: the so-called exotic R
4 (cf. [18]

for a physical approach; a relevant recent reference is [50]).
Working in lorentzian signature, a Hamiltonian path integral can be

dreamt of, where a functional integral is performed over three-dimensional
geometries (cf. [6]) only. Here the situation is slightly better: it seems that
there is recent progress in the proof of Thurston’s geometrization conjecture,
which implies in particular Poincaré’s conjecture, and which explains all three-
dimensional manifolds in terms of eight different geometries. Incidentally, the
work of Perelman [49] uses what mathematicians call the Ricci flow, which is
exactly the flow of the renormalization group of the sigma model associated
to the bosonic string in a curved background.

Let us finally comment that even if the basic theory of Nature is topological
one needs to enumerate topologies to discriminate between different ones.
Besides, topological symmetry has to be broken al low energies.
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In order to reach a probabilistic interpretation, a scalar product ought
to be defined. The one which is naturally associated to the Wheeler-de Witt
equation is not positive-definite, so this remains as an open problem in this
approach.

Were somebody apply these ideas to the whole Universe (the so called
Quantum Cosmology) there are other problems in store. It is not clear what
is the physical interpretation of probabilities associated to a single event. A re-
lated problem is the one of the physical interpretation of Quantum Mechanics
without classical observers. Many people have related this to the decoherence
mechanisms (cf. for example [30]) but it seems to me that the situation is still
to be clarified.

6 Perturbative (Graviton) Approach

A much more modest approch is to study gravitons as ordinary (massless,
spin two) particles in Minkowski space-time.

gαβ = ḡαβ + κhαβ (40)

It seems to many people (including the author) that this is at least a prelim-
inary step before embarking in more complicated adventures. As a quantum
field theory, quantum general relativity has got a dimensionful coupling :
d(κ) = −1, which means that it is not renormalizable in the usual sense of
the word.

In spite of this, the theory is one loop finite on shell , as was shown in a
brilliant calculation by G. ’t Hooft and M. Veltman [33]. They computed the
counterterm:

∆L(1) =
√
ḡ

ε

203
80
R̄2 (41)

No more miracles are expected for higher loops, and none happen. Goroff
and Sagnotti [27] were the first to show that to two loops,

∆L(2) =
209

2880(4π)4
1
ε
R̄αβ

γδR̄
γδ

ρσR̄
ρσ

αβ (42)

The general structure of perturbation theory is governed by the fact we
have just mentioned that the coupling constant is dimensionful. A general
diagram will then behave in the s-channel as κnsn and counterterms as:

∆L ∼
∑∫

κnR(2+n/2) (43)

(where a symbolic notation has been used), packing all invariants with the
same dimension; for example, R2 stands for an arbitrary combination of R2,
RαβR

αβ and RαβγδR
αβγδ conveying the fact that that the theory is non-

renormalizable.
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It may however be pondered whether effective lagrangians are really useful
for E � mP . This possibility has been forcefully explored by Donoghue and
collaborators (cf. [21]). There are some caveats: for example, when horizons
are present, it seems necessary in order to be able to apply these ideas, to use
some particular foliations, the so called nice slices). The mere fact that we are
unable to predict the cosmological constant (which is the mother of all infrared
problems) means that our understanding has ample room for improvement.

Could it be that in spite of the fact that general relativity is not renormal-
izable, there is a non perturbative sector in which the theory makes sense as
a quantum theory? First of all, were that true, it would be most remarkable:
there are no known QFT which are defined only nonperturbatively. Besides,
at the classical level, perturbation theory works wonderfully, and there is in-
deed a whole framework, the parameterized post-newtonian (PPN) formalism
to discriminate between alternate theories of gravity. It is then most unclear
why at the quantum (and only there) level perturbation theory should fail.

We want to mention in closing this chapter, some fascinating relation-
ships uncovered by Z. Berm and collaborators (cf. [16]) between purely field-
theoretical S matrix elements in (super)gravity and gauge theories: the so
called Gravity = Gauge × Gauge conjecture. In spite of several attempts, it
is not clear how this can be understood from the Einstein-Hilbert action. The
relationship is of course automatic in strings, because closed string amplitudes
(which include the graviton) are given by products of open string amplitudes
(which contain the gauge fields). The KLT relations [40] are a quantitative
formulation of this fact.

In view of all this, one can try to study particular extensions of the
Einstein-Hilbert actions. Modifications quadratic in the curvature improve
renormalizability [39], but have problems with unitarity at a very fundamen-
tal level [61].

Local supersymmetry is expected to improve the ultraviolet behavior
through cancellations between fermionic and bosonic degrees of freedom. In
spite of that, some infinities are allowed by the symmetries of the problem,
and are thus expected to appear; for example in extended supergravities this is
expected to happen at loop order L > 10

D−2 in the maximally supersymmetric
case in which there are 32 supercharges.

The (sad) conclusion of all this is that ordinary QFT (with a finite num-
ber of fields) does not work, even for describing small (quantum) ripples in
Minkowski space.

7 Strings

It should be clear by now that we probably still do not know what is exactly
the problem to which string theories are the answer. At any rate, the starting
point is that all elementary particles are viewed as quantized excitations of
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a one dimensional object, the string, which can be either open (free ends) or
closed (a loop). Excellent books are avaliable, such as [29, 52].

String theories enjoyed a convoluted history. Their origin can be traced
to the Veneziano model of strong interactions. A crucial step was the rein-
terpretation by Scherk and Schwarz [58] of the massless spin two state in
the closed sector (previously thought to be related to the Pomeron) as the
graviton and consequently of the whole string theory as a potential theory of
quantum gravity, and potential unified theories of all interactions. Now the
wheel has made a complete turn, and we are perhaps back through the Mal-
dacena conjecture [44] to a closer relationship than previously thought with
ordinary gauge theories.

Fig. 3. String theorist at work

From a certain point of view, their dynamics is determined by a two-
dimensional non-linear sigma model, which geometrically is a theory of imbed-
dings of a two-dimensional surface (the world sheet of the string) to a (usually
ten-dimensional) target space:

xµ(ξ) : Σ2 →Mn (44)

There are two types of interactions to consider. Sigma model interactions (in
a given two-dimensional surface) are defined as an expansion in powers of
momentum, where a new dimensionful parameter, α′ ≡ l2s sets the scale. This
scale is a priori believed to be of the order of the Planck length. The first
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terms in the action always include a coupling to the massless backgrounds:
the spacetime metric, the two-index Maxwell like field known as the Kalb-
Ramond or b-field, and the dilaton. To be specific,

S =
1
l2s

∫

Σ2

gµν(x(ξ))∂ax
µ(ξ)∂bx

ν(ξ)γab(ξ) + . . . (45)

There are also string interactions, (changing the two-dimensional surface) pro-
portional to the string coupling constant, gs, whose variations are related to
the logarithmic variations of the dilaton field. Open strings (which have glu-
ons in their spectrum) always contain closed strings (which have gravitons in
their spectrum) as intermediate states in higher string order (gs) corrections.
This interplay open/closed is one of the most fascinating aspects of the whole
string theory.

It has been discovered by Friedan (cf. [25]) that in order for the quantum
theory to be consistent with all classical symmetries (diffeomorphisms and
conformal invariance), the beta function of the generalized couplings4 must
vanish:

β(gµν) = Rµν = 0 (46)

This result remains until now one of the most important in string theory,
hinting at a deep relationship between Einstein’s equations and the renormal-
ization group.

Polyakov [53] introduced the so called non-critical strings which have in
general a two-dimensional cosmological constant (forbidden otherwise by Weyl
invariance). The dynamics of the conformal mode (often called Liouville in this
context) is, however, poorly understood.

Fundamental strings live in D = 10 spacetime dimensions, and so a
Kaluza-Klein mecanism of sorts must be at work in order to explain why
we only see four non-compact dimensions at low energies. Strings have in
general tachyons in their spectrum, and the only way to construct seemingly
consistent string theories (cf. [26]) is to project out those states, which leads
to supersymmetry. This means in turn that all low energy predictions heavily
depend on the supersymmetry breaking mechanisms.

String perturbation theory is probably well defined although a full proof
is not available.

Several stringy symmetries are believed to be exact: T-duality, relating
large and small compactification volumes, and S-duality, relating the strong
coupling regime with the weak coupling one. Besides, extended configurations
(D branes); topological defects in which open strings can end are known to be
important [51]. They couple to Maxwell-like fields which are p-forms called
Ramond-Ramond (RR) fields. These dualities [36] relate all five string theories
(namely, Heterotic E(8)×E(8), Heterotic SO(32), type I, IIA and IIB) and
4 There are corrections coming from both dilaton and Kalb-Ramond fields. The

quoted result is the first term in an expansion in derivatives, with expansion
parameter α′ ≡ l2s .
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it is conjectured that there is an unified eleven-dimensional theory, dubbed
M -theory of which N = 1 supergravity in d = 11 dimensions is the low energy
limit.

7.1 Big Results

Perhaps the main result is that graviton physics in flat space is well defined
for the first time, and this is no minor accomplishment.

Besides, there is evidence that at least some geometric singularities are
harmless in the sense that strings do not feel them. Topology change ampli-
tudes do not vanish in string theory.

The other Big Result [62] is that one can correctly count states of extremal
black holes as a function of charges. This is at the same time astonishing and
disappointing. It clearly depends strongly on the objects being BPS states
(that is, on supersymmetry), and the result has not been extended to non-
supersymmetric configurations. On the other hand, as we have said, it exactly
reproduces the entropy as a function of a sometimes large number of charges,
without any adjustable parameter.

7.2 The Maldacena Conjecture

Maldacena [44] proposed as a conjecture that IIB string theories in a back-
ground AdS5 × S5 with common radius l ∼ ls(gsN)1/4 and N units of RR
flux that is,

∫
S5
F5 = N (which implies that F5 ∼ N

r5 ) is equivalent to a four
dimensional ordinary gauge theory in flat four-dimensional Minkowski space,
namely N = 4 super Yang-Mills with gauge group SU(N) and coupling con-
stant g = g1/2

s .
Although there is much supersymmetry in the problem and the kinematics

largely determine correlators, (in particular, the symmetry group SO(2, 4) ×
SO(6) is realized as an isometry group on the gravity side and as an R-
symmetry group as well as conformal invariance on the gauge theory side) this
is not fully so5 and the conjecture has passed many tests in the semiclassical
approximation to string theory.

The action of the RR field, given schematically by
∫
F 2

5 , scales as N2,
whereas the ten-dimensional Einstein-Hilbert

∫
R, depends on the overall

geometric scale as the eighth power of the common radius, l8. The ’t Hooft
coupling is λ = g2N ∼ l4

l4s
and the tenth dimensional Newton’s constant is

κ2
10 ∼ G10 ∼ l8p = g2s l

8
s ∼ l8

N2 .
If we consider the effective five dimensional theory after compactifying

on a five sphere of radius r, the RR term yields a negative contribution
∼ −( N

r5 )2r5, whereas the positive curvature of the five sphere S5 gives a pos-
itive contribution, ∼ 1

r2 r
5. The competition between these two terms in the

5 The only correlators that are completely determined through symmetry are the
two and three-point functions.
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effective potential is responsible for the minimum with negative cosmological
constant.

The way the dictionary works in detail [69] is that the supergravity action
corresponding to fields with prescribed boundary values is related to gauge
theory correlators of certain gauge invariant operators corresponding to the
particular field studied:

e−Ssugra[Φi]

∣
∣
∣
∣
Φi|∂AdS=φi

= 〈e
∫
Oiφi〉CFT (47)

This is the first time that a precise holographic description of spacetime in
terms of a (boundary) gauge theory is proposed and, as such it is of enormous
potential interest. It has been conjectured by ’t Hooft [64] and further devel-
oped by Susskind [63] that there should be much fewer degrees of freedom
in quantum gravity than previously thought. The conjecture claims that it
should be enough with one degree of freedom per unit Planck surface in the
two-dimensional boundary of the three-dimensional volume under study. The
reason for that stems from an analysis of the Bekenstein-Hawking [15, 31]
entropy associated to a black hole, given in terms of the two-dimensional area
A6 of the horizon by

S =
c3

4G�
A . (49)

This is a deep result indeed, still not fully understood.
It is true on the other hand that the Maldacena conjecture has only been

checked for the time being in some corners of parameter space, namely when
strings can be approximated by supergravity in the appropriate background.

8 Dualities and Branes

The so- called T-duality is the simplest of all dualities and the only one which
can be shown to be true, at least in some contexts. At the same time it is a
very stringy characteristic, and depends in an essential way on strings being
extended objects. In a sense, the web of dualities rests on this foundation,
so that it is important to understand clearly the basic physics involved. Let
us consider strings living on an external space with one compact dimension,
which we shall call y, with topology S1 and radius R. The corresponding field
in the imbedding of the string, which we shall call y (i.e. we are dividing the
target-spacetime dimensions as (xµ, y), where y parameterizes the circle), has
then the possibility of winding around it:
6 The area of the horizon for a Schwarzschild black hole is given by:

A =
8πG2

c4
M2 (48)
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Fig. 4. Conjectured relationships between string theories in different dimensions

y(σ + 2π, τ) = y(σ, τ) + 2πRm . (50)

A closed string can close in general up to an isometry of the external spacetime.
The zero mode expansion of this coordinate (that is, forgetting about

oscillators) would then be

y = yc + 2pcτ +mRσ . (51)

Canonical quantization leads to [yc, pc] = i, and single-valuedness of the plane
wave eiycpc enforces as usual pc ∈ Z/R, so that pc = n

R .
The zero mode expansion can then be organized into left and right movers

in the following way

yL(τ + σ) = yc/2 +
(
n

R
+
mR

2

)

(τ + σ) ,

yR(τ − σ) = yc/2 +
(
n

R
− mR

2

)

(τ − σ) . (52)

The mass shell conditions reduce to

m2
L =

1
2

(
n

R
+
mR

2

)2

+NL − 1 ,

m2
R =

1
2

(
n

R
− mR

2

)2

+NR − 1 . (53)

Level matching, mL = mR, implies that there is a relationship between mo-
mentum and winding numbers on the one hand, and the oscillator excess on
the other

NR −NL = nm . (54)

At this point it is already evident that the mass formula is invariant under
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R → R∗ ≡ 2/R , (55)

and exchanging momentum and winding numbers. This is the simplest in-
stance of T-Duality.

On the other hand, it is an old observation (which apparently originated
in Schrödinger) that Maxwell’s equations are almost symmetrical with respect
to interchange between electric and magnetic degrees of freedom. This idea
was explored by Dirac and eventually lead to the discovery of the consistency
conditions that have to be fulfilled if there are magnetic monopoles in nature.
The fact that nonsingular magnetic monopoles appear as classical solutions in
some gauge theories led further support to this duality viewpoint. In order to
be able to make a consisting conjecture, first put forward by Montonen and
Olive [45], supersymmetry is needed, as first remarked by Osborn [47].

Now in strings there are the so-called Ramond-Ramond (RR) fields, which
are p-forms of different degrees. In the same way that one forms (i.e., the
Maxwell field) couples to charged particles that is, from the spacetime point
of view, to objects of dimension 0 with one-dimensional trajectories, a p-form

Aµ1...µp
(56)

would couple to a (p−1)-dimensional object, whose world history is described
by a p-dimensional hypersurface

xµ = xµ(ξ1 . . . ξp) (57)

These objects are traditionally denoted by the name p-branes (it all originated
in a dubious joke). That is, ordinary particles are 0-branes, a string is a 1-
brane, a membrane is a 2-brane, and so on.

Dualities relate branes of different dimensions in different theories; this
means that if one is to take this symmetry seriously, it is not clear at all that
strings are the more fundamental objects: in the so called M -theory branes
appear as fundamental as strings.

If we are willing to make the hypothesis that supersymmetry is not going
to be broken whilst increasing the coupling constant, gs, some astonishing
conclusions can be drawn. Assuming this, massless quanta can become massive
as gs grows only if their number, charges and spins are such that they can
combine into massive multiplets (which are all larger than the irreducible
massless ones). The only remaining issue, then, is whether any other massless
quanta can appear at strong coupling.

Now, in the IIA string theory there are states associated to the Ramond-
Ramond (RR) one form, A1, namely the D-0-branes, whose tension goes as
m ∼ 1

gs
. This clearly gives new massless states in the strong coupling limit.

There are reasons7 to think that this new massless states are the first
level of a Kaluza-Klein tower associated to compactification on a circle of an
7 In particular: The fact that there is the possibility of a central extension in the IIA

algebra, related to the Kaluza-Klein compactification of the d = 11 Supergravity
algebra.
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11-dimensional theory. Actually, assuming an 11-dimensional spacetime with
an isometry k = ∂

∂y , an Ansatz which exactly reproduces the dilaton factors
of the IIA string is

ds2(11) = e
4
3 φ(dy −A(1)

µ dx
µ)2 + e−

2
3 φgµνdx

µdxν . (58)

Equating the two expressions for the D0 mass,

1
gs

=
1
R11

, (59)

leads to R11 = e
2
3 φ = g2/3

A .
This means that a new dimension appears at strong coupling, and this

dimension is related to the dilaton. The only reason why we do not see it
at low energies is precisely because of the smallness of the string coupling,
related directly to the dilaton field. The other side of this is that this eleven
dimensional theory, dubbed M-theory does not have any weak coupling limit;
it is always strongly coupled. Consequently, not much is known on this the-
ory, except for the fact that its field theory, low curvature limit is N = 1
supergravity in d = 11 dimensions.

All supermultiplets of massive one-particle states of the IIB string super-
symmetry algebra contain states of at least spin 4. This means that under the
previous set of hypothesis, the set of massless states at weak coupling must
be exactly the same as the corresponding set at strong coupling. This means
that there must be a symmetry mapping weak coupling into strong coupling.

There is a well-known candidate for this symmetry: Let us call, as usual,
l the RR scalar and φ the dilaton (NSNS). We can pack them together into
complex scalar

S = l + ie−
φ
2 . (60)

The IIB supergravity action in d = 10 is invariant under the SL(2,R) trans-
formations

S → aS + b
cS + d

, (61)

if at the same time the two two-forms, Bµν (the usual, ever-present, NS field),
and A(2), the RR field transform as

(
B
A(2)

)

→
(

d −c
−b a

)(
B
A(2)

)

, (62)

Both the, Einstein frame, metric gµν and the four-form A(4) are inert under
this SL(2,R) transformation.

A discrete subgroup SL(2,Z) of the full classical SL(2,R) is believed to
be an exact symmetry of the full string theory. The exact imbedding of the
discrete subgroup in the full SL(2,R) depends on the vacuum expectation
value of the RR scalar.
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The particular transformation

g =
(

0 1
−1 0

)

, (63)

maps φ into −φ (when l = 0), and B into A(2). This means that the string
coupling

gs → 1
gs

(64)

This is a strong/weak coupling type of duality, similar to the electromagnetic
duality in that sense. The standard name for it is an S-duality type of transfor-
mation, mapping the ordinary string with NS charge, to another string with
RR charge (which then must be a D-1-brane, and is correspondingly called a
D-string), and, from there, is connected to all other D-branes by T-duality.

Using the fact that upon compactification on S1, IIA at RA is equivalent
to IIB at RB ≡ 1/RA, and the fact that the effective action carries a factor
of e−2φ we get

RAg
2
B = RBg

2
A , (65)

which combined with our previous result, gA = R3/2
11 implies that gB = R

3/2
11

RA
.

Now the Kaluza-Klein ansatz implies that from the eleven dimensional view-
point the compactification radius is measured as

R2
10 ≡ R2

Ae
−2φ/3 , (66)

yielding

gB =
R11

R10
. (67)

From the effective actions written above it is easy to check that there is a
(S-duality type) field transformation mapping the SO(32) Type I open string
into the SO(32) Heterotic one namely

gµν → e−φgHet
µν ,

φ → −φ ,
B′ → B . (68)

This means that physically there is a strong/weak coupling duality, because
coupling constants of the compactified theories would be related by

ghet = 1/gI ,

Rhet = RI/g
1/2
I . (69)
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9 Summary: the State of the Art in Quantum Gravity

In the loop approach one is working with nice candidates for a quantum theory.
The theories are interesting, probably related to topological field theories [17]
and background independence as well as diffeomorphism invariance are clearly
implemented. On the other hand, it is not clear that their low energy limit is
related to Einstein gravity.

Strings start from a perturbative approach more familiar to a parti-
cle physicist. However, they carry all the burden of supersymmetry and
Kaluza-Klein. It has proved to be very difficult to study nontrivial non-
supersymmetric dynamics.

Finally, and this applies to all approaches, the holographic ideas seem
intriguing; there are many indications of a deep relationship between gravity
and gauge theories.

We would like to conclude by insisting on the fact that although there
is not much we know for sure on quantum effects on the gravitational field,
even the few things we know are a big feat, given the difficulty to do physics
without experiments.

Progress could be made if we could derive semiclassical gravity in such a
way that corrections to it can be reliably estimated, for example

Rµν − 1
2
Rgµν = 2κ2〈ψ|T̂µν |ψ〉 +

1
L2
∆ , (70)

when working at a certain scale of distances, say L. In order to understand
those equations, we would had to know something about the operator of which
the first member is the expectation value; something about the state on which
the expectation value is computed (In particular, if it is the vacuum, how is
it to be defined?) and finally, something about the definition of the energy
momentum tensor as a composite operator. A question of obvious physical
interest is the estimate of the size of the corrections: Is the expected error at
a given scale of distance L

∆ ∼ �G

c3L2
(71)

or, does it depend of the characteristic energy of the source?

∆ ∼ GE2

�c5
(72)

measured with respect to what?
It is painfully clear that there is still a large margin for improving our

understanding of effective quantum field theories. For example, there is still
no convincing derivation of Hawking radiation without transplanckian modes
appearing at some point (this particular example is related to the existence
of the nice slices mentioned above). Besides, we do not understand the cos-
mological constant, which is clearly related to the estimate of ∆.



54 E. Alvarez

The observational prospects are rather poor. In many models, in particular
in the loop approach (and also in strings, with some qualifications) deviations
from the lorentzian dispersion relations are expected:

E2 = p2 +m2 + E2
∑

n=1

cn

(
E

mP

)n

(73)

Other contributions will undoubtedly analyze those in much more detail. Let
us now simply mention that noncommutative models make similar predictions.

Winding states are stringy phenomena, and its observation would be very
interesting. Stringy predictions, however, are in general difficulty to disen-
tangle from predictions of supersymmetry (SUSY). Namely, SUSY has to be
broken, and this scale spoils almost all differences between strings and QFT
models.

With the great triumph of particle physics at the end of the seventies,
namely the experimental discovery of the intermediate bosons related to elec-
troweak interactions, the standard model was confirmed in all its essential
traits, waiting only for the Higgs to be discovered (at LHC?) and the the-
oretical effort has concentrated in more and more speculative topics, and
experimental guidance has become correspondingly scarce. The net result is
that, even more so that in the old days of the hunting for the theory of strong
interactions, theoretical physics is divided in almost disconnected clans.

All this is even more true when talking about quantum gravity, a paradise
of speculation.

This is the reason why all efforts such as the one in the present workshop,
aiming at making contact with experiment and/or observation are welcome,
and will eventually redirect physics on a healthier track when we learn to
recognize the physically relevant facts that presumably lie in front of our
eyes.
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After a brief review of the first phase of development of Quantum-Gravity
Phenomenology, I argue that this research line is now ready to enter a more
advanced phase: while at first it was legitimate to resort to heuristic order-
of-magnitude estimates, which were sufficient to establish that sensitivity to
Planck-scale effects can be achieved, we should now rely on detailed analyzes
of some reference test theories. I illustrate this point in the specific example
of studies of Planck-scale modifications of the energy/momentum dispersion
relation, for which I consider two test theories. Both the photon-stability an-
alyzes and the Crab-nebula synchrotron-radiation analyzes, which had raised
high hopes of “beyond-Plankian” experimental bounds, turn out to be rather
ineffective in constraining the two test theories. Examples of analyzes which
can provide constraints of rather wide applicability are the so-called “time-of-
flight analyzes”, in the context of observations of gamma-ray bursts, and the
analyzes of the cosmic-ray spectrum near the GZK scale.

1 From “Quantum Gravity Beauty Contests”
to Quantum Gravity Phenomenology

The “quantum-gravity problem” has been studied for more than 70 years [1]
assuming that no guidance could be obtained from experiments. This in turn
led to the assumption that the most promising path toward the solution of
the problem would be the construction and analysis of very ambitious theories
(some would call them “theories of everything”), capable of solving at once
all of the issues raised by the coexistence of gravity and quantum mechan-
ics. In other research areas the availability of experimental data challenging
the current theories encourages theorists to propose phenomenological models
which solve the experimental puzzles, even when some aspects of the models
are not fully satisfactory from a conceptual perspective. Often those appar-
ently unsatisfactory models turn out to provide an important starting point
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for the identification of the correct (and conceptually satisfactory) theoreti-
cal description of the new phenomena. But in this quantum-gravity research
area, since there was no experimental guidance, it was inevitable for theo-
rists to be tempted into trying to identify the correct theoretical framework
relying exclusively on some criteria of conceptual compellingness. Of course,
tempting as it may seem, this strategy would not be acceptable for a scientific
endeavor. Even the most compelling and conceptually satisfying theory could
not be adopted without experimental confirmation.

The mirage (occasionally mentioned at relevant seminars) that one day
within an ambitious quantum-gravity theory one might derive from first prin-
ciples a falsifiable prediction for the mundane realm of doable experiments
could give some “scientific legitimacy” to these research programmes, but
this possibility never materialized. It may indeed be just a mirage. There
are several occasions when a debate between advocates of different ambi-
tious quantum-gravity theories shapes up in a way similar to the discussion
between advocates of different religions. And often in the media the differ-
ent approaches are compared on the basis of the “support” they have in the
community: one says “the most popular approach to the quantum gravity
problem” rather than “the approach that has had better success reproducing
experimental results”. So, it would seem, the Quantum Gravity problem is to
be solved by an election, by a beauty contest, by a leap of faith.

Over the last few years a growing number of research groups have at-
tempted to tackle the quantum-gravity problem with an approach which is
more consistent with the traditional strategy of scientific work. Simple (in
some cases even simple-minded) non-classical pictures of spacetime are being
analyzed with strong emphasis on their observable predictions. Certain classes
of experiments have been shown to have extremely high sensitivity to some
non-classical features of spacetime. We now even have (see later) some first
examples of experimental puzzles whose solution is being sought also within
simple ideas involving non-classical pictures of spacetime. The hope is that
by trial and error, both on the theory side and on the experiment side, we
might eventually stumble upon the first few definite (experimental!) hints on
the quantum-gravity problem.

Quantum gravity phenomenology requires of course a combination of the-
ory and experiments. It does not adopt any particular prejudice concerning the
structure of spacetime at short distances (in particular, “string theory” [2, 3],
“loop quantum gravity” [4, 5, 6, 7] and “noncommutative geometry” [8, 9] are
seen as equally deserving mathematical-physics programmes), but of course
must follow as closely as possible the few indications that these ambitious
quantum-gravity theories provide. One here is guided by the expectation that
quantum-gravity research should proceed just in the old-fashioned way of sci-
entific work: through small incremental steps starting from what we know and
combining mathematical-physics studies with experimental studies to reach
deeper and deeper layers of understanding of the problem at hand (in this
case the short-distance structure of spacetime and the laws that govern it).
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The most popular quantum-gravity approaches, such as string theory and
loop quantum gravity, could be described as “top-to-bottom approaches” since
they start off with some key assumption about the structure of spacetime at
scales that are some 17 orders of magnitude beyond the scales presently acces-
sible experimentally, and then they should work their way back to the realm
of doable experiments. With “quantum gravity phenomenology” I would like
to refer to all studies that are intended to contribute to a “bottom-to-top ap-
proach” to the quantum-gravity problem. Since the problem at hand is really
difficult (arguably the most challenging problem ever faced by the physics
community) it appears likely that the two complementary approaches might
combine in a useful way: for the “bottom-to-top approach” it is important to
get some guidance from the (however tentative) indications emerging from the
“top-to-bottom approaches”, while for “top-to-bottom approaches” it might
be useful to be alerted by quantum-gravity phenomenologists with respect to
the type of new effects that could be most stringently tested experimentally
(it is hard for “top-to-bottom approaches” to obtain a complete description
of “real” physics, but perhaps it would be possible to dig out predictions on
some specific spacetime features that appear to deserve special attention in
light of the corresponding experimental sensitivities).

In these lectures I give a “selected-topics” introduction to this “Quantum
Gravity Phenomenology”. I will in particular stress that, while the first few
years of work in this area, the “dawn” of quantum-gravity phenomenology [10],
were necessarily based on rather preliminary analyzes, with the only objective
of establishing the point that Planck-scale sensitivity could be achieved in
some cases, we should now gear up for a more “mature” phase of work on
quantum-gravity phenomenology, in which the development and analysis of
some carefully crafted test theories takes center stage.

2 Quantum Gravity Phenomenology

In this section I describe the key objectives of quantum-gravity phenomenol-
ogy and sketch out its strategy in the search of the first manifestation of a
quantum property of spacetime. I also start introducing my argument that we
should now move from the “dawn” of quantum-gravity phenomenology to a
more “mature” quantum-gravity phenomenology, in which a key role is played
by the development and analysis of some carefully crafted test theories.

2.1 Planck-Scale Quantum Properties of Spacetime

The first step for the identification of experiments relevant for quantum grav-
ity is of course the identification of the characteristic scale of this new physics.
This is a point on which we have relatively robust guidance from theories and
theoretical arguments: the characteristic scale at which non-classical proper-
ties of spacetime physics become large (as large as the classical properties
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they compete with) should be the Planck length Lp ∼ 10−35 m (or equiv-
alently its inverse, the Planck scale Ep ∼ 1028 eV). The key challenge for
quantum-gravity phenomenology must be the one of establishing ways to pro-
vide sensitivity to Planck-scale non-classical properties of spacetime.

I will call “quantum” properties of spacetime all effects which represent
departures from a classical picture of spacetime. This is after all what is com-
monly done in the literature, where authors often use the name “quantum
properties of spacetime” because of the expectation that some of the familiar
features of quantization, which showed up everywhere else in physics, should
eventually also play a role in the description of spacetime. There is no guaran-
tee that the non-classical properties of spacetime will take the shape of some
sort of proper spacetime quantization. But, as long as this is understood, the
use of the spacetime-quantization terminology does no arm.

Of course, the search of a solution of the quantum-gravity problem can
benefit also from other types of experimental insight, and therefore the scopes
of quantum-gravity phenomenology must go even beyond its key quantum-
spacetime challenge. In particular, quantum gravity should also provide a
consistent description of the quantum properties of particles in presence of
strong (or anyway non-negligible) classical gravity fields. This type of con-
text at the “Interface of Quantum and [classical] Gravitational Realms” [11]
has been the subject of a rather sizeable literature for several decades. When
quantum properties of spacetime are not relevant for the analysis the insight
one can gain for the quantum-gravity problem is of more limited impact, but
it is of course still valuable. Indeed a valuable debate on the fate of the Equiv-
alence Principle in quantum gravity was ignited already in the mid 1970s with
the renowned experiment performed by Colella, Overhauser and Werner [12].
That experiment has been followed by several modifications and refinements
(often labelled “COW experiments” from the initials of the scientists involved
in the first experiment) all probing the same basic physics, i.e. the validity of
the Schrödinger equation

[

−
(

�
2

2MI

)

∇2 +MG φ(r)
]

ψ(t, r) = i �
∂ ψ(t, r)
∂t

(1)

for the description of the dynamics of matter (with wave function ψ(t, r))
in presence of the Earth’s gravitational potential φ(r). [In (1) MI and MG

denote the inertial and gravitational mass respectively.]
The COW experiments exploit the fact that the Earth’s gravitational po-

tential puts together the contributions of a very large number of particles and
as a result, in spite of its per-particle weakness, the overall gravitational field
is large enough1 to introduce observable effects. The relevance of these exper-
iments for the debate on the Equivalence Principle will not be discussed here,
1 Actually the effect turns out to be observably large because of a double “ampli-

fication”: the first, and most significant, amplification is the mentioned coherent
addition of gravitational fields generated by the particles that compose the Earth,
the second amplification [13] involves the ratio between the wavelength of the
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but has been discussed in detail by several authors (see, e.g., [14, 15, 16]). I
here just bring to the reader’s attention a recent experiment which appears
to indicate a violation of the Equivalence Principle [17] (but the reliability of
this experimental result is still being debated), and some ideas for intriguing
new experiments [13, 18] of the COW type. I should also mention for com-
pleteness the related work on the interplay between classical general relativity
and quantum mechanics of non-gravitational degrees of freedom reported in
[19, 20].

Another possibility that, even though it is in contrast with the idea of
Planck-scale quantum properties of spacetime, deserves some exploratory ef-
fort by those working in quantum-gravity phenomenology is the one of sce-
narios in which the standard estimate of the quantum-gravity scale as the
Planck scale turns out to be too pessimistic. There is (at present) no com-
pelling argument in support of the idea that the quantum-gravity scale should
be effectively lowered, but this possibility cannot be excluded. In particular,
some recent studies [21] found a mechanism that would allow to lower signif-
icantly the quantum-gravity energy scale, several orders of magnitude below
the Planck energy scale. This mechanism relies of the hypothesis of “large
extra dimensions” which is not in any way “natural” (not even in the eyes of
the scientists who proposed it), but it can be used to provide an example of
a workable scenario for a low scale of quantum-gravity effects.

For the rest of these lectures I will however focus on what I described as
the key challenge: the search of Planck-scale quantum properties of spacetime.

2.2 Identification of Experiments

Unfortunately, in spite of more than 70 years of theory work on the quantum-
gravity problem, and a certain proliferation of theoretical frameworks being
considered, there is only a small number of physical effects that have been con-
sidered in the quantum-gravity literature. Moreover, most of these effects con-
cern strong-gravity contexts, such as black-hole physics and big-bang physics,
which are exciting at the level of conceptual analysis and development of for-
malism, but are not very promising for the actual (experimental) discovery of
manifestations of non-classical properties of spacetime.

While it is likely that the largest quantum-gravity effects should be present
in large-curvature situations, it only takes a little reasoning to realize that we
should give priority to quantum-gravity effects that modify our description of
(quasi-)Minkowski spacetime. The effects will perhaps be smaller than, say,
in black hole physics (in some aspects of black hole physics quantum-gravity
effects might be as large as classical physics effects), but we are likely to be
better off considering quasi-Minkowski spacetimes, for which the quality of
the data we can obtain is extremely high.

particles used in the COW experiments and some larger length scales involved in
the experimental setup.
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In the analysis of flat-spacetime processes, involving particles with ener-
gies that are inevitably much lower than the Planck energy scale, we will
have to deal with a large suppression of quantum-gravity effects, a suppres-
sion which is likely to take the form of some power of the ratio between the
Planck length and the wavelength of the particles involved. The presence of
these suppression factors on the one hand reduces sharply our chances of
finding quantum-gravity effects, but on the other hand simplifies the problem
of identifying promising experimental contexts, since these experimental con-
texts must enjoy very special properties which would not go easily unnoticed.
For laboratory experiments even an optimistic estimate of these suppression
factors leads to a suppression of order 10−16, which one obtains by assuming
(probably already using some optimism) that at least some quantum-gravity
effects are only linearly suppressed by the Planck length, and taking as par-
ticle wavelength the shorter wavelengths we are able to produce (∼10−19 m).
In astrophysics (which however limits one to “observations” rather than “ex-
periments”) particles of shorter wavelength are being studied, but even for
the highest energy cosmic rays, with energy of ∼1020 eV and therefore wave-
lengths of ∼10−27 m, a suppression of the type Lp/λ would take values of order
10−8. It is mostly as a result of this type of considerations that traditional
quantum-gravity reviews considered the possibility of experimental studies of
Planck-scale effects with unmitigated pessimism [22].

However, the presence of large suppression factors surely cannot suffice
for drawing any conclusions. Even just looking within the subject of particle
physics we know that certain types of small effects can be studied, as illus-
trated by the example of the remarkable limits obtained on proton instability.
Outside of fundamental physics more success stories of this type are easily
found. Think for example of brownian motion, where some unobservably small
micro-processes lead to an effect which is observable on macroscopic scales.

It is hard but clearly not impossible to find experimental contexts in which
there is effectively an amplification of the small effect one intends to study.
The prediction of proton decay within certain grandunified theories of par-
ticle physics is really a small effect, suppressed by the fourth power of the
ratio between the mass of the proton and grandunification scale, which is
only three orders of magnitude smaller than the Planck scale. In spite of this
horrifying suppression, of order [mproton/Egut]4 ∼ 10−64, with a simple idea
we have managed to acquire full sensitivity to the new effect: the proton life-
time predicted by grandunified theories is of order 1039 s and “quite a few”
generations of physicists should invest their entire lifetimes staring at a single
proton before its decay, but by managing to keep under observation a large
number of protons (think for example of a situation in which 1033 protons
are monitored) our sensitivity to proton decay is dramatically increased. In
that context the number of protons is the dimensionless quantity that works
as “amplifier” of the new-physics effect. Similar considerations explain the
success of brownian-motion studies already a century ago.
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We should therefore focus our attention [10] on experiments which have
something to do with spacetime structure and that host an ordinary-physics
dimensionless quantity large enough that (if we are “lucky”) it could amplify
the extremely small effects we are hoping to discover. So there is clearly a first
level of analysis in which one identifies experiments with this rare quality, and
a second level of analysis in which one tries to establish whether indeed the
candidate “amplifier” could possibly amplify effects connected with spacetime
structure.

2.3 Prehistory of Quantum Gravity Phenomenology

Clearly a good phenomenological programme must be able to falsify theories.
Although it is already noteworthy that some candidate quantum-gravity ef-
fects could at all be looked for in the data, this would not be so significant if
we were not able to use these data to constrain the work of theorists, to falsify
some theoretical pictures. The fact that, toward the end of the 1990s, it was
convincingly argued that this could be done brought the idea of “Planck-scale
tests” to center stage in quantum-gravity research. The fact that we could
plausibly gain insight on Planck-scale physics is now widely acknowledged in
the quantum-gravity community. Up to 1997 or 1998 there had already been
some works on the possibility to find experimental evidence of some Planck-
scale effects, but the relevant data analyzes did not in reverse have the capabil-
ity to falsify any quantum-gravity picture and the relevant research remained
at the margins of the mainstream quantum-gravity literature.

A first example of these works of the “prehistory of quantum-gravity phe-
nomenology” is provided by a certain type of investigation of Planck-scale
departures from CPT symmetry using the neutral-kaon and the neutral-B
systems [23, 24, 25, 26]. These pioneering works were based on the realiza-
tion that in the relevant neutral-meson systems a Planck-scale departure from
CPT symmetry could in principle be amplified; in particular, the neutral-kaon
system hosts the peculiarly small mass difference between long-lived and the
short-lived kaons |ML −MS |/ML,S ∼ 7·10−15. The quantum-gravity picture
usually advocated in these studies is the one of a variant of the string-theory
picture, which relies on noncritical strings, in the so-called “Liouville” ap-
proach [25, 27]. This is an ambitious attempt for a theory of everything,
which, while based on an appealing view of the quantum-gravity problem, is
for the most part untreatable, at least with current techniques. The depar-
tures from CPT symmetry cannot be derived from the theory, but one can
provide tentative evidence that the structure of the theory should accommo-
date such departures. As a result one is forced to set up a multi-parameter
phenomenology which looks for the new effects, but a negative outcome of the
experiments could not be used to falsify the framework which is at the root
of the analysis.

Similar remarks apply to the other pioneering studies reported in [28],
which find their original motivation in some aspects of “string field theory” [28].
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Also the string-field-theory formalism is very ambitious and too hard to han-
dle. A multi-parameter phenomenology is necessarily set up [28], and a neg-
ative outcome of the experiments could not be used to falsify the framework
which is at the root of the analysis. Besides the falsifiability issue, this phe-
nomenology may not appeal to many quantum-gravity researchers because
it mainly focuses on the “Standard Model Extension”, whose key assump-
tion [29] is the renormalizability of the underlying field theory. The assumption
of renormalizability limits one to effects that area described in terms of op-
erators of dimension 4 and lower, whereas most quantum-gravity researchers
expect Planck-scale-suppressed effects described in terms of operators of di-
mension 5 and higher.

A third equally-deserving entry in my list of pioneers of the “prehistory
of quantum-gravity phenomenology” is the work reported in [30, 31] which
explored the general issue of how certain effectively stochastic properties of
spacetime would affect the evolution of quantum-mechanical states. The guid-
ing idea was that stochastic processes could provide an effective description
of quantum spacetime processes. The implications of these stochastic proper-
ties for the evolution of quantum-mechanical states were modelled in [30, 31]
via the formalism of “primary state diffusion”, but only rather crude models
turned out to be treatable. As also emphasized by the authors, the crudeness
of the models is such that all conclusions are to be considered as tentative
at best, and this is one more instance in which a negative outcome of the
experiments could not be used to falsify the framework which is at the root
of the analysis.

The three research lines I discussed in this subsection as examples of “pre-
history of quantum-gravity phenomenology” showed convincingly that the
possibility of stumbling upon an experimental manifestation of Planck-scale
effects could not be excluded. On the other hand they proved to be insuffi-
cient for the birth a genuine, fully articulated, phenomenological programme.
In that regard their key common limitation was the mentioned fact that it
appeared that the relevant experiments could not falsify the relevant theo-
ries. Moreover, it often appeared that these studies were establishing that
some not-much-studied quantum-gravity approaches could lead to observable
effects, as a way to distinguish them from the most popular quantum-gravity
ideas which would remain untestable. Of course, the interest of the community
grew when it became apparent that a rather large variety of quantum-gravity
ideas could lead to observable effects (and could be falsified). A sizeable com-
munity now works under the assumption that the presence of observably-large
quantum-gravity effects is not a peculiar feature of some out-of-mainstream
quantum-gravity approaches: it is a property of most quantum-gravity ap-
proaches, including some of the most popular ones.
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2.4 The Dawn of Quantum Gravity Phenomenology

The research lines discussed in the previous subsections had been establishing
that it was not inconceivable to use data within our reach (inevitably involv-
ing particles with energies much lower than the Planck energy scale) to find
evidence of a Planck-scale effect. However, while these research did ignite a
lively interest by some experimentalists (see, e.g., [32, 33]), they went largely
unnoticed by mainstream quantum-gravity research. As stressed above, this
was likely due to the fact that they were incomplete proposals from the view-
point of phenomenology, because the test theories could not be really falsified,
and because the relevant test theories were all outside mainstream quantum-
gravity research, so that the fact that Planck scale effects could be seen ap-
peared to be a peculiar property of out-of-mainstream theories. On the other
hand, clearly those research lines were starting set the stage for a wider and
more developed phenomenological effort, which indeed came to existence to-
ward the end of the 1990s. When, indeed starting toward the end of the 1990s,
the case for falsifiability of some Planck-scale models started to be built, and
first evidence of testability of mainstream quantum-gravity proposals emerged,
a corresponding quick growth of interest emerged in the community. This is
perhaps best illustrated by comparing authoritative quantum-gravity reviews
published up to the mid 1990s (see, e.g., [22]) and the corresponding reviews
published over the last couple of years [34, 35, 36, 37].

This “dawn” of quantum-gravity phenomenology has revolved around a
growing number of experimental contexts in which Planck-scale effects are
being sought. Among the most popular such proposals let me mention, as a
few noteworthy examples, the studies of in-vacuo dispersion using gamma-ray
astrophysics [38, 39], studies of laser-interferometric limits on quantum-gravity
effects [40, 41, 42, 43, 44], studies of the role of quantum-gravity effects in the
determination of the energy-momentum-conservation threshold conditions for
certain particle-physics processes [45, 46, 47, 48, 49], and studies of the role of
quantum gravity in the determination of particle-decay amplitudes [50, 51].

The idea of looking for Planck-scale departures from CPT symmetry con-
tinues to be pursued, but in that context we are still lacking an analysis
showing how a quantum-gravity model could be falsified on the basis of such
CPT studies. This is essentially due to some technical challenges in estab-
lishing what exactly happens to CPT symmetry within a given Planck-scale
picture. It is often easy to see that CPT is affected, but one is then unable to
establish how it is affected.

As I shall stress again later, among all these research lines a special
role in the development of quantum-gravity phenomenology is being played
by studies of the role of quantum-gravity effects in the determination of
the energy-momentum-conservation threshold conditions for certain particle-
physics processes. In fact, in these studies we have stumbled upon a first
example of experimental puzzle whose solution could plausibly be sought
within quantum-gravity phenomenology. This of course marked an important
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milestone for quantum-gravity phenomenology. The relevant context is the
one of the process of photopion production, p + γ → p + π0, which, as dis-
cussed later in these lectures, plays a crucial role in the analysis of the cosmic-
ray spectrum. An apparent “anomaly” in the observed cosmic-ray spectrum
could be naturally described in terms of Planck-scale effects. Of course, it is
not unlikely that this “anomaly” might fade away, as better data on cosmic
rays become available, but it is nonetheless an important sign of maturity
for quantum-gravity phenomenology that some data invite interpretation as a
possible manifestation of Planck-scale physics. Chances are the first few such
“candidate anomalies” will turn out to be incorrect, but eventually one lucky
instance could be encountered.

2.5 The Maturity of Quantum Gravity Phenomenology:
Test Theories

The fact that quantum-gravity phenomenology is already being considered
in attempts to solve present experimental puzzles is indeed a clear indica-
tion of progress toward the maturity of the field, but in many respects the
field is still rather immature. The first challenge for quantum-gravity phe-
nomenologists was to establish convincingly that there is a chance to test
Planck-scale effects, and this type of argument can legitimately be based on
intuitive order-of-magnitude analyzes. However, at this point a rather large
community acknowledges that quantum-gravity phenomenology has a chance,
so the first challenge was successfully overcome, and we must now shift gear.
There is very little more to be gained through rudimental back-of-the-envelope
analyzes. The standards of quantum-gravity phenomenology must be raised to
the ones adopted in other branches of phenomenology, such as particle-physics
phenomenology.

In these lectures I shall in particular emphasize the importance of adopting
some reference test theories. If an effect is described only vaguely, without the
support of an associated test theory, then the experimental limits that can be
claimed are of correspondingly uncertain significance. As it has happened in
the recent quantum-gravity-phenomenology literature, different authors may
end up claiming different limits on “the same effect” simply because they are
actually adopting different test theories and therefore they are truly analyzing
different effects. This type of phenomenology clearly would not help us gain
any insight on Planck-scale physics. The main task of phenomenology is to
provide to the theorists working at the development of the theories information
on what is and what is not consistent with experimental data. Phenomenol-
ogy essentially provides some boundaries within which formal theorists are
then forced to work. A theory which would predict effects inconsistent with
some data is abandoned. But if this boundaries are not clearly drawn, if the
experimental limits are placed on “effects” which are not rigorously defined
within the context of a test theory, then they are correspondingly useless for
the development of theories.
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The discussion here reported in Sect. 4 will illustrate this point in a specific
context.

3 Some Candidate Quantum-Gravity Effects

Before focusing, in the next section, on an example of “quantum-gravity-
phenomenology exercise”, it seems appropriate to list at least a few of the
candidate quantum-gravity effects that find motivation in the literature.

Testing these effects will be the main task of quantum-gravity phenom-
enology. While here I will discuss these effects at a rather rudimentary and
intuitive level, so that my remarks would apply to a variety of approaches to
the quantum-gravity problem, clearly in each theory these effects may take a
different form, and in setting up a phenomenology for these effects it will be
crucial to develop some corresponding test theories.

In providing motivation for the study of these effects I could use a large
variety of arguments; however, I find preferable to show that these effects
can be motivated already on the basis of the most plausible of all hypothe-
ses concerning the quantum-gravity problem: the hypothesis that some of the
incarnations of the “quantum” idea (such as discretization and noncommuta-
tivity of observables) should find place also in the description of spacetime.

3.1 Planck-Scale Departures from Lorentz Symmetry

Perhaps the most debated possibility for a quantum spacetime, possibly in-
tended as Planck-scale discrete or Planck-scale noncommutative spacetime, is
the one of Planck-scale departures from Lorentz symmetry.

The continuous symmetries of a spacetime reflect of course the structure
of that spacetime. Ordinary Lorentz symmetry is governed by the single scale
that sets the structure of classical Minkowski spacetime, the speed-of-light
scale c. If one introduces additional structure in a flat spacetime its symme-
tries will be accordingly affected. This is particularly clear for some simple
ideas concerning a Planck-scale discretization of spacetime [52]. Continuous
symmetry transformations are clearly at odd with a discrete network of points.

For different reasons, Lorentz symmetry is also often at odds with space-
time noncommutativity. In particular, it appears that in certain cases the
noncommutativity length scale [53] (possibly the Planck scale), in addition to
c, affects the laws of transformation between inertial observers, and infinitesi-
mal symmetry transformations are actually described in terms of the new lan-
guage of Hopf algebras [54, 55], rather than by the Poincaré Lie algebra. The
type of spacetime quantization provided by noncommutativity may therefore
lead to a corresponding “symmetry quantization”: the concept of Lie-algebra
symmetry is in fact replaced by the one of Hopf-algebra symmetry.
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In a large number of recent studies of noncommutative spacetimes it has
indeed been found that the Lie-algebra Poincaré symmetries are either broken
to a smaller symmetry Lie algebra or deformed into Hopf-algebra symmetries.

For what concerns the idea of spacetime discretization the most developed
quantum-gravity picture is the one of Loop Quantum Gravity, which does not
predict a rigid discrete network of spacetime points, but introduces discretiza-
tion in a more sophisticated way: the spectra of areas and volumes are dis-
cretized, while spacetime points loose all possible forms of identity. It appears
that even this more advanced form of discretization is incompatible with clas-
sical Lorentz symmetry; in fact, a growing number of loop-quantum-gravity
studies has been reporting [56, 57] evidence of Planck-scale departures from
Lorentz symmetry (although the issue remains subject to further scrutiny).

3.2 Planck-Scale Departures from CPT Symmetry

The fact that our low-energy2 observations are consistent with CPT symme-
try is not a miracle: as codified by the CPT theorem, a Lorentz-invariant
local quantum field theory is inevitably CPT invariant. The fact that quan-
tum gravity, the “unification” of gravity and quantum theory, invites us to
consider Planck-scale departures from Lorentz symmetry (as stressed above)
and Planck-scale departures from locality (as natural in a discrete-spacetime
theory) opens the door for Planck-scale departures from CPT symmetry.

While this general argument is rather robust, it is not always easy to estab-
lish what is the fate of CPT symmetry in a given quantum-gravity approach.
For example in Loop Quantum Gravity the analysis of (the various alterna-
tive ideas) on coupling ordinary particles to gravity has not yet advanced
to the point of allowing a robust description of C transformations. On the
other hand there are examples in which some progress in the analysis of CPT
transformations has been achieved and evidence of departures from CPT sym-
metry is found. This is for example the case of κ-Minkowski noncommutative
spacetime, where one can clearly see [58] a modification of P transformations.

Since I am not considering CPT symmetry in the remainder of these lec-
tures let me mention here that, besides the neutral-kaon and neutral-B sys-
tems, already briefly discussed in the previous section, also neutrinos are being
considered [59, 60, 61] as a possible laboratory for tests of Planck-scale de-
partures from CPT symmetry.
2 Since it is often obvious from the context, I will sometimes avoid specifying “en-

ergies that are low with respect to the Planck energy scale” and simply write
“low-energy”. With “high-energy particles” instead I will not mean “particles
with energy higher than the Planck energy scale” (a situation which we never
encounter), but rather the case of particles with energy rather close to (but still
lower than) the Planck scale.
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3.3 Distance Fuzziness

As one last example of effect that one could plausibly expect from quantum
gravity, I consider here “distance fuzzyness”. Once again one is exploring the
possibility that some ideas from quantum theory would apply to spacetime
physics. A key characteristic of quantum theory is the emergence of uncer-
tainties, and one might expect that the “distance observable” would also be
affected by uncertainties. Actually various heuristic arguments suggest that
for such a “distance observable” the uncertainties might be more pervasive:
in ordinary quantum theory one is still able to measure sharply any given
observable, though at the cost of renouncing all information on a conjugate
observable, but it appears plausible that a quantum-gravity “distance ob-
servable” would be affected by irreducible uncertainties. Most authors would
consider a δD ≥ Lp relation, meaning that the uncertainty in the measure-
ment of distances could not be reduced below the Planck-length level, but
measurability bounds of other forms, generically of the type δD ≥ f(D,Lp)
(with f some function such that f(D, 0) = 0) are also being considered.

The presence of such an irreducible measurement uncertainty could be
significant in various contexts. For example, these ideas would suggest that
the noise levels in the readout of a laser interferometer would receive an ir-
reducible (fundamental) contribution from quantum-gravity effects. Interfer-
ometric noise can in principle be reduced to zero in classical physics, but
already the inclusion in the analysis of the ordinary quantum properties of
matter introduces an extra noise contribution with respect to classical physics.
A fundamental Planck-scale-induced uncertainty in the length of the arms of
the interferometer would introduce another source of noise, and the possibility
of testing this idea is presently under investigation (see, e.g., [40, 41, 42, 43]).

3.4 Aside on the Differences Between Systematic
and Nonsystematic Effects

It is perhaps useful to stress the differences between systematic and nonsys-
tematic Planck-scale effects, which I can illustrate using the the type of effects
discussed in the previous parts of this section.

An example of systematic effect is given by the departures from Lorentz
symmetry encountered in certain noncommutative spacetimes (on which I
shall return later in these lectures). There the Planck-scale structure of space-
time can introduce a systematic dependence of the speed of photons on their
wavelength. After a journey of duration T the difference between the expected
position of the photon and the Planck-scale-corrected position could take the
form ∆x ∼ Tδv ∼ cTLp/λ, where λ is the photon wavelength.

If we instead focus on how “distance fuzziness” could affect the propagation
of photons it is natural to expect that a group of photons would all travel the
same average distance in a given time T (and this average distance is still given
by cT ), but for each individual photon the distance travelled might be slightly
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different from the average, as a result of distance fuzziness. This is an example
of nonsystematic effect. Just to be more specific let us imagine that distance
fuzziness effectively introduces a Planck-length uncertainty in position per
each Planck time of travel. Then the final position uncertainty would be of
the type ∆x ∼ √

cTLp. The square root here (assuming a random-walk-type
description) is the result of the fact that nonsystematic effects do not add
linearly, but rather according to rules familiar in the analysis of stochastic
processes.

4 A Prototype Exercise: Modified Dispersion Relations

In the previous sections I tried to give a general, but rough, description of
how one works in quantum-gravity phenomenology. I will now discuss a spe-
cific example of quantum-gravity-phenomenology study, with the objective of
illustrating in more detail the type of challenges that one must face and some
strategies that can be used. The example I am focusing on is the one of Planck-
scale modifications of the energy-momentum dispersion relation, which has
been extensively studied from the quantum-gravity-phenomenology perspec-
tive. I will start with a brief description of how modified dispersion relations
arise3 in the study of noncommutative spacetimes and in the study of loop
quantum gravity. I will then discuss some test theories which might play a
special role in the development of the relevant phenomenology. And finally I
will discuss some observations in astrophysics which can be used to set limits
on the test theories.

4.1 Modified Dispersion Relations
in Canonical Noncommutative Spacetime

The noncommutative spacetimes in which modifications of the dispersion re-
lation are being most actively considered all fall within the following rather
general parametrization of noncommutativity of the spacetime coordinates:

[xµ, xν ] = iθµν + iρβ
µνxβ . (2)

It is convenient to first focus on the special case ρ = 0, the “canonical non-
commutative spacetimes”

[xµ, xν ] = iθµν . (3)

3 I discuss noncommutative spacetimes and the Loop Quantum Gravity approach,
which are the best understood Planck-scale frameworks in which it appears that
the dispersion relation is Planck-scale modified. But other types of intuitions
about the quantum-gravity problem may lead to modified dispersion relations,
including some realizations of the idea of “spacetime foam” [38, 62, 27], which
allow an analogy with the laws of particle propagation in a thermal environ-
ment [38, 62, 63].
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Of course, the natural first guess for introducing dynamics in these space-
times is a quantum-field-theory formalism. And indeed, for the special case
ρ = 0, an approach to the construction of a quantum field theory has been de-
veloped rather extensively [64, 65]. While most aspects of these field theories
closely resemble their commutative-spacetime counterparts, a surprising fea-
ture that emerges is the so-called “IR/UV mixing”[64, 65, 66]: the high-energy
sector of the theory does not decouple from the low-energy sector. Connected
with this IR/UV mixing is the type of modified dispersion relations that one
encounters in field theory on canonical noncommutative spacetime, which in
general take the form

m2 � E2 − p2 +
α1

pµθµνθνσpσ
+ α2m

2 ln (pµθµνθ
νσpσ) + . . . , (4)

where the αi are parameters, possibly taking different values for different
particles (the dispersion relation is not “universal”), that depend on various
aspects of the field theory, including its field content and the nature of its
interactions. The fact that this dispersion relation can be singular in the
infrared is a result of the IR/UV mixing. A part of the infrared singularity
could be removed by introducing (exact) supersymmetry, which typically leads
to α1 = 0.

The implications of this IR/UV mixing for dynamics are still not fully
understood, and there is still justifiable skepticism [67] toward the correctness
of the type of field-theory construction adopted so far. I think it is legitimate
to even wonder whether a field-theoretic formulation of the dynamics is at all
truly compatible with the canonical spacetime noncommutativity. The Wilson
decoupling between IR and UV degrees of freedom is a crucial ingredient of
most applications of field theory in physics, and it is probably incompatible
with canonical noncommutativity: the associated uncertainty principle of the
type ∆xµ∆xν ≥ θµν implies that it is not possible to probe short distances
(small, say, ∆x1) without probing simultaneously the large-distance regime
(∆x2 ≥ θ2,1/∆x1).

In any case, the presence of modified dispersion relations in canonical non-
commutative spacetime should be expected, since Lorentz symmetry is “bro-
ken” by the tensor θµν . An intuitive characterization of this Lorentz-symmetry
breaking can be obtained by looking at wave exponentials. The Fourier theory
in canonical noncommutative spacetime is based [68] on simple wave expo-
nentials eip

µxµ and from the [xµ, xν ] = iθµν noncommutativity relations one
finds that

eip
µxµeik

νxν = e−
i
2 pµθµνkν

ei(p+k)µxµ , (5)

i.e. the Fourier parameters pµ and kµ combine just as usual, but there is
the new ingredient of the overall θ-dependent phase factor. The fact that
momenta combine in the usual way reflects the fact that the transformation
rules for energy-momentum from one (inertial) observer to another are still
the familiar, undeformed, Lorentz transformation rules. However, the product
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of wave exponentials depends on pµθµνk
ν ; it depends on the “orientation” of

the energy-momentum vectors pµ and kν with respect to the θµν tensor. The
θµν tensor plays the role of a background that identifies a preferred class of
inertial observers4. Different particles can be affected by the presence of this
background in different ways, leading to the emergence of different dispersion
relations. All this is consistent with indications of the mentioned popular field
theories in canonical noncommutative spacetimes.

4.2 Modified Dispersion Relations
in κ-Minkowski Noncommutative Spacetime

In canonical noncommutative spacetimes Lorentz symmetry is “broken” and
there is growing evidence that Lorentz symmetry breaking occurs for most
choices of the tensors θ and ρ. It is at this point clear, in light of several
recent results, that the only way to preserve Lorentz symmetry is the choice
θ = 0 = ρ, i.e. the case in which there is no noncommutativity and one is back
to the familiar classical commutative Minkowski spacetime. When noncom-
mutativity is present Lorentz symmetry is usually broken, but recent results
suggest that for some special choices of the tensors θ and ρ Lorentz symmetry
might be deformed, in the sense of the recently proposed “doubly-special rela-
tivity” scenario [53], rather than broken. In particular, this appears to be the
case for the Lie-algebra κ-Minkowski [54, 55, 58, 71, 72, 73] noncommutative
spacetime (l,m = 1, 2, 3)

[xm, t] =
i

κ
xm , [xm, xl] = 0 . (6)

κ-Minkowski is a Lie-algebra spacetime that clearly enjoys classical space-
rotation symmetry; moreover, at least in a Hopf-algebra sense (see, e.g., [72]),
κ-Minkowski is invariant under “noncommutative translations”. Since I am
focusing here on Lorentz symmetry, it is particularly noteworthy that in κ-
Minkowski boost transformations are necessarily modified [72]. A first hint of
this comes from the necessity of a deformed law of composition of momenta,
encoded in the so-called coproduct (a standard structure for a Hopf algebra).
One can see this clearly by considering the Fourier tranform. It turns out [58,
71] that in the κ-Minkowski case the correct formulation of the Fourier theory
requires a suitable ordering prescription for wave exponentials. From
4 Note that these remarks apply to canonical noncommutative spacetimes as stud-

ied in the most recent (often String-Theory inspired) literature, in which θµν is in-
deed simply a tensor (for a given observer, an antisymmetric matrix of numbers).
I should stress however that the earliest studies of canonical noncommutative
spacetimes (see [69] and follow-up work) considered a θµν with richer mathe-
matical properties, notably with nontrivial algebra relations with the spacetime
coordinates. In that earlier, and more ambitious, setup it is not obvious that
Lorentz symmetry would be broken: the fate of Lorentz symmetry may depend
on the properties (dynamics?) attributed to θµν .
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: eik
µxµ :≡ eikmxmeik

0x0 , (7)

as a result of [xm, t] = ixm/κ (and [xm, xl] = 0), it follows that the wave
exponentials combine in a nontrivial way:

(: eip
µxµ :)(: eik

νxν :) =: ei(p+̇k)µxµ : . (8)

The notation “+̇” here introduced reflects the behavior of the mentioned
“coproduct” composition of momenta:

pµ+̇kµ ≡ δµ,0(p0 + k0) + (1 − δµ,0)(pµ + eλp0kµ) . (9)

As argued in [53] the nonlinearity of the law of composition of momenta
might require an absolute (observer-independent) momentum scale, just like
upon introducing a nonlinear law of composition of velocities one must intro-
duce the absolute observer-independent scale of velocity c. The inverse of the
noncommutativity scale λ should play the role of this absolute momentum
scale. This invites one to consider the possibility [53] that the transforma-
tion laws for energy-momentum between different observers would have two
invariants, c and λ, as required in “doubly-special relativity” [53].

On the basis of (9) one is led [54, 55, 58] to the following result for the
form of the energy/momentum dispersion relation

(
2
λ

sinh
λm

2

)2

=
(

2
λ

sinh
λE

2

)2

− eλEp2 , (10)

which for low momenta takes the approximate form

m2 � E2 − p2 − λEp2 . (11)

Actually, the precise form of the dispersion relation may depend on the choice
of ordering prescription for wave exponentials [72] ((10) follows form (7)),
and this point deserves further scrutiny, but even setting aside this annoying
ordering ambiguity, there appear to be severe obstructions [71, 72] for a satis-
factory formulation of a quantum field theory in κ-Minkowski. The techniques
that were rather straightforwardly applied for the construction of field theory
in canonical noncommutative spacetime do not appear to be applicable in the
κ-Minkowski case. It is not implausible that the “virulent” κ-Minkowski non-
commutativity may require some departures from a standard field-theoretic
setup.

4.3 Modified Dispersion Relation in Loop Quantum Gravity

Loop Quantum Gravity is one of the most ambitious approaches to the
quantum-gravity problem, and its understanding is still in a relatively early
stage. As presently understood, Loop Quantum Gravity predicts an inherently
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discretized spacetime [4, 5, 6], and this occurs in a rather compelling way: it is
not that one introduces by hand an a priori discrete background spacetime; it
is rather a case in which a background-independent analysis ultimately leads,
by a sort of self-consistency, to the emergence of discretization. There has been
much discussion recently, prompted by the studies [38, 56, 57], of the possi-
bility that this discretization might lead to broken Lorentz symmetry and a
modified dispersion relation. Although there are cases in which a discretization
is compatible with the presence of continuous classical symmetries [74, 75], it
is of course natural, when adopting a discretized spacetime, to put Lorentz
symmetry under careful scrutiny. Arguments presented in [56, 57] suggest that
Lorentz symmetry might indeed be broken in Loop Quantum Gravity.

Moreover, very recently Smolin, Starodubtsev and I proposed [76] (also see
the follow-up study in [77]) a mechanism such that Loop Quantum Gravity
would be described at the most fundamental level as a theory that in the
flat-spacetime limit admits deformed Lorentz symmetry, in the sense of
the “doubly-special relativity” scenario [53]. Our argument originates from
the role that certain quantum symmetry groups (“q-deformed algebras”) have
in the Loop-Quantum-Gravity description of spacetime with a cosmological
constant, and observing that in the flat-spacetime limit (the limit of vanishing
cosmological constant) these quantum groups might not contract to a classical
Lie algebra, but rather contract to a quantum (Hopf) algebra.

All these studies point to the presence of a modified dispersion relation,
although different arguments lead to different intuition for the form of the
dispersion relation. A definite result might have to wait for the solution of
the well-known “classical-limit problem” of Loop Quantum Gravity. We are
presently unable to recover from this full quantum-gravity theory the limit-
ing case in which the familiar quantum-field-theory description of particle-
physics processes in a classical background spacetime applies. Some recent
studies appear to suggest [78] that in the same contexts in which depar-
tures from Lorentz symmetry may be revealed one should adopt a density-
matrix formalism, and then the whole picture would collapse to the familiar
Lorentz-invariant quantum-field-theory description in contexts involving both
relatively low energies and relatively low boosts with respect to the center-
of-mass frame (e.g. the particle-physics collisions studied at several particle
accelerators).

4.4 Some Issues Relevant for the Proposal of Test Theories

In these lectures I am attempting to stress in particular the need for quantum-
gravity phenomenology to establish that some Planck-scale pictures of space-
time are falsifiable and the need to rely on some reference test theories in the
analysis of the progress of experimental limits as better data become available.

The results I briefly summarized in the previous three subsections provide
a good indication of the fact that falsifiability is within reach. Both in the
analysis of noncommutative spacetimes and in the analysis of Loop Quantum
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Gravity there are a few open issues which do not at present allow us to describe
in detail a falsifiable prediction, but, in light of the progress achieved over the
last few years, the nature of these open issue encourages us to think that we
should soon achieve falsifiability.

In the meantime quantum-gravity phenomenology will have to push the
limits on the type of effects that are emerging, and this effort should be
guided by the objective of falsifiability. The analyzes should avoid relying on
assumptions which are likely to prove incorrect for the relevant formalisms.
And when the open issues confront us with some alternative scenarios, the
phenomenology work should attempt to “cover all possibilities”, i.e. push the
limits in all directions that are still compatible with the present understanding
of the formalism (so that when the ambiguity is resolved there will be a class
of data ready for comparison with theory).

In this situation it will be crucial for the development of the phenom-
enological programme to adopt some suitably structured test theories, which
should also be useful for bridging the gap between the experimental data and
the, still incomplete, falsifiability analysis. These test theories should be our
common language in assessing the progresses made in improving the sensitiv-
ity of experiments, a language that must also be suitable for access from the
side of those working at the development of the quantum-gravity/quantum-
spacetime theories.

As we contemplate the challenge of developing such carefully-balanced
test theories it is important to observe that the most robust part of the re-
sults I summarized in the previous three subsections is clearly the emergence
of modified dispersion relations. Therefore if one could set up experiments
testing directly the dispersion relation the resulting limits would have wide
applicability. In principle one could investigate the form of the dispersion
relation directly by making simultaneous measurements of energy and space-
momentum; however, it is easy to see that achieving Planck-scale sensitivity
in such a direct test is well beyond our capabilities.

Useful test theories on which to base the relevant phenomenology must
therefore combine the ingredient of the dispersion relation with other ingre-
dients. As I shall discuss in greater detail later in this section, there are three
key issues for this test-theory development:

(i) in presence of the modified dispersion relation should we still assume the
validity of of the relation v = dE/dp between the speed of a particle and
its dispersion relation? (here dE/dp is the derivative of the function E(p)
which of course is implicitly introduced through the dispersion relation)

(ii) in presence of the modified dispersion relation should we still assume the
validity of the standard law of energy-momentum conservation?

(iii) in presence of the modified dispersion relation which formalism should
be adopted for the description of dynamics?

The fact that these are key issues is also a consequence of the type of data
that we expect to have access to, as I shall discuss later in this section.
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Unfortunately on these three key points the quantum-spacetime pictures
which are providing motivation for the study of Planck-scale modifications
of the dispersion relation, reviewed in the previous three subsections, are not
providing much guidance yet.

For example, in Loop Quantum Gravity, while we do have evidence that the
dispersion relation should be modified, we do not yet have a clear indication
concerning whether the law of energy-momentum conservation should also be
modified and we also cannot yet robustly establish whether the relation v =
dE/dp should be preserved. Moreover, perhaps most importantly, some recent
studies [78] invite us to consider the possibility that in the same contexts
in which Loop-Quantum-Gravity departures from Lorentz symmetry may be
revealed one should also adopt a density-matrix formalism, and then the whole
picture might reduce to the familiar Lorentz-invariant quantum-field-theory
description in contexts involving both relatively low energies and relatively
low boosts with respect to the center-of-mass frame. We should therefore be
prepared for surprises in the description of dynamics.

Similarly in the analysis of noncommutative spacetimes we are close to
establishing in rather general terms that some modification of the dispersion
relation is inevitable, but other aspects of the framework have not yet been
clarified. While most of the literature for canonical noncommutative space-
times assumes [64, 65] that the law of energy-momentum conservation should
not be modified, most of the literature for κ-Minkowski spacetime argues in
favor of a modification (perhaps consistent with the corresponding doubly-
special-relativity criteria [53]) of the law of energy-momentum conservation.
There is also still no consensus on the relation between speed and dispersion
relation, and particularly in the κ-Minkowski literature some departures from
the v = dE/dp relation are actively considered [79, 80, 81, 82]. And concerning
the formalism to be used for the description of dynamics in a noncommutative
spacetime, while everybody’s first guess is the field-theoretic formalism, the
fact that attempts at a field theory formulation encounter so many difficul-
ties (the IR/UV mixing for the canonical-noncommutative spacetime case and
the even more pervasive shortcomings of the proposals for a field theory in
κ-Minkowski) must invite one to consider possible alternative formulations of
dynamics.

Clearly the situation on the theory side invites us to be prudent: if a
given phenomenological picture relies on too many assumptions on Planck-
scale physics it is likely that it might not reproduce any of the mentioned
quantum-gravity and/or quantum-spacetime models (when these models are
eventually fully understood they will give us their own mix of Planck-scale
features, which is difficult to guess at the present time). On the other hand
it is necessary for the robust development of a phenomenology to adopt well-
defined test theories. Without reference to a well-balanced set of test theories it
is impossible to compare the limits obtained in different experimental contexts,
since each experimental context may require different “ingredients” of Planck-
scale physics. And it is of course meaningless to compare limits obtained on
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the basis of different conjectures for the Planck-scale regime, especially since
our very limited understanding of the Planck scale regime should encourage
us to be prudent when formulating any assumption (virtually any assumption
about the Planck-scale regime could turn out to be incorrect, once theories
are better understood).

4.5 A Test Theory for Pure Kinematics

The majority (see, e.g., [39, 45, 46, 47, 48]) of studies concerning Planck-scale
modifications of the dispersion relation adopt the phenomenological formula

m2 � E2 − p2 + ηp2

(
En

En
p

)

+O

(
En+3

En+1
QG

)

, (12)

with real η of order 1 and integer n. This formula is compatible with some of
the results obtained in the Loop-Quantum-Gravity approach and reflects the
results obtained in κ-Minkowski and other noncommutative spacetimes (but,
as mentioned, in the special case of canonical noncommutative spacetimes one
encounters a different, infrared singular, dispersion relation).

As stressed above, on the basis of the status on the theory side, a prudent
approach in combining the dispersion relation with other ingredients is to be
favored. Since basically all experimental situations will involve some aspects
of kinematics that go beyond the dispersion relation (while there are some
cases in which the dynamics, the interactions among particles, does not play
a role), and taking into account the mentioned difficulties in establishing what
is the correct formalism for the description of dynamics5 at the Planck scale,
most authors prefer to prudently combine the dispersion relation with other
“purely kinematical” aspects of Planck-scale physics.

Already in the first studies [38, 83] that proposed a phenomenology based
on (12) it was assumed that even at the Planck scale the familiar description
of “group velocity”, obtained from the dispersion relation according to v =
dE/dp, should hold6.
5 I am here using the expression “dynamics at the Planck scale” with some license.

Of course, in our phenomenology we will not be sensitive directly to the dynamics
at the Planck scale. However, as I discuss in greater detail in the next subsection,
if the arguments that encourage the use of new descriptions of dynamics at the
Planck scale are correct, then a sort of “order of limits problem” clearly arises.
Our experiments will involve energies much lower than the Planck scale, and
we know that in the infrared limit the familiar formalism with field-theoretic
description of dynamics and Lorentz invariance will hold. So we would need to
establish whether experiments that are sensitive to Planck-scale departures from
Lorentz symmetry could also be sensitive to Planck-scale departures from the
field-theoretic description of dynamics. Since we still know very little about this
alternative descriptions of dynamics a prudent approach, avoiding any assumption
about the description of dynamics is certainly preferable.

6 As mentioned, this assumption is not guaranteed to apply to the formalisms of
interest, and indeed several authors have considered alternatives [79, 80, 81, 82].
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In other works motivated by the analysis reported in [38] another key
kinematical feature was introduced: starting with the studies reported in
[45, 46, 47, 48] the dispersion relation (12) and the velocity relation v = dE/dp
were combined with the assumption that the law of energy-momentum con-
servation should not be modified at the Planck scale, so that, for example, in
a a+ b→ c+ d particle-physics process one would have

Ea + Eb = Ec + Ed , (13)

pa + pb = pc + pd . (14)

Most authors work within this kinematic framework assuming “universal-
ity” of the dispersion relation (on which I shall return in the next subsec-
tion), but some have allowed [49, 85] for a particle-dependence and possibly
an helicity-polarization dependence of the coefficients η, n of the dispersion
relation.

The elements I described in this subsection compose a quantum-gravity
phenomenology test theory that has already been widely considered in the
literature, even though it was never previously characterized in detail. In the
following I will refer to this test theory as the “AEMNS test theory”7, and I
will assume that experimental bounds on this test theory should be placed by
using only the following assumptions:

(AEMNS.1) the dispersion relation is of the form

m2 � E2 − p2 + ηap2

(
Ena

Ena
p

)

+O

(
En+3

En+1
QG

)

, (15)

where ηa and na can in general take different values for different particles and
for different helicities-polarizations of the same particle (the index spans over
particles and helicities/polarizations);

(AEMNS.2) the velocity of a particle can be obtained from the dispersion
relation using v = dE/dp;

While the studies advocating alternatives to v = dE/dp rely of a large variety
of arguments (some more justifiable some less), in my own perception [84] a key
issue here is whether quantum gravity leads to a modified Heisenberg uncertainty
principle, [x, p] = 1+ F (p). Assuming a Hamiltonian description is still available,
v = dx/dt ∼ [x, H(p)], the relation v = dE/dp essentially follows from [x, p] = 1.
But if [x, p] �= 1 then v = dx/dt ∼ [x, H(p)] would not lead to v = dE/dp. And
there is much discussion in the quantum-gravity community of the possibility of
modifications of the Heisenberg uncertainty principle at the Planck scale.

7 I am using “AEMNS” on the basis of the initials of the names of the authors
in [38], which first proposed a phenomenology based on the dispersion relation
(12). But as mentioned the full test theory, as presently used in most studies,
only emerged gradually in follow-up work. In particular, there was no discussion
of energy-momentum conservation in [38]. Unmodified energy-momentum conser-
vation was introduced in [45, 46, 47, 48].
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(AEMNS.3) the law of energy-momentum conservation is not modified;
(AEMNS.4) nothing is assumed about dynamics (i.e. the analysis of this

test theory will be limited to classes of experimental data that involve pure
kinematics, without any role for dynamics).

4.6 The Minimal AEMNS Test Theory

On the basis of the results we presently have, at least within Loop Quan-
tum Gravity and the study of certain noncommutative spacetimes, the for-
mulation of the “AEMNS test theory” discussed in the previous subsection
is general enough that we should expect it to be relevant for most quantum-
spacetime pictures in which Lorentz symmetry is broken. Since, as mentioned,
the analysis of these models is still in progress we might eventually be forced
to consider further generalizations, including a possible modifications of the
energy-momentum conservation law8 and/or of the law v = dE/dp.

Rather then prematurely considering this possible even wider parameter
space, at present it is more reasonable to focus on a “minimal version” of
the AEMNS test theory, in which the universality of the dispersion relation
is assumed. It is in fact natural to expect that universality will be preserved
in most of the relevant quantum-spacetime pictures. Moreover, as long as
this minimal AEMNS test theory is not ruled out, clearly its more general
nonuniversal version discussed in the previous subsection cannot be ruled.
And it will be very useful to have a simple two-parameter space to use as
reference in keeping track of the gradual improvement of the experimental
sensitivities.

In order to be self-contained let me list here the characteristics of this
“minimal AEMNS test theory”:

(minAEMNS.1) the dispersion relation is of the form

m2 � E2 − p2 + ηp2

(
En

En
p

)

+O

(
En+3

En+1
QG

)

, (16)

where η and n are universal (same value for every particle and for both helic-
ities/polarizations of a given particle);

(minAEMNS.2) the velocity of a particle can be obtained from the disper-
sion relation using v = dE/dp;

(minAEMNS.3) the law of energy-momentum conservation is not modified;
8 In a doubly-special-relativity framework with modified dispersion relation the

law of energy-momentum conservation must be correspondingly modified in order
to preserve the equivalence of inertial observers [53]. Instead in a framework in
which Lorentz symmetry is actually broken, with the associated loss of equiv-
alence among inertial observers, modifications of the dispersion relation are in
principle compatible with an unmodified law of energy-momentum conservation.
Still, even in the broken-Lorentz-symmetry case, a modification of the law of
energy-momentum conservation is possible.
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(minAEMNS.4) nothing is assumed about dynamics (i.e. the analysis of
this test theory will be limited to classes of experimental data that involve
pure kinematics, without any role for dynamics).

4.7 A Test Theory Based on Low-Energy Effective Field Theory

The AEMNS test theory has the merit of relying only on a relatively small net-
work of assumptions on kinematics, without assuming anything about the role
of the Planck scale in dynamics. However, of course, this justifiable prudence
turns into a severe limitation on the class of experimental contexts which can
be used to constrain the parameters of the test theory. It is in fact rather rare
that a phenomenological analysis can be completed without using (more or
less explicitly) any aspects of the interactions among the particles involved in
the relevant processes. The desire to be able to analyze a wider class of ex-
perimental contexts is therefore providing motivation for the development of
test theories more ambitious than the AEMNS test theory, with at least some
elements of dynamics. This is understandable but, in light of the situation on
the theory side, work with one of these more ambitious test theories should
proceed with the awareness that there is a high risk that it may turn out that
none of the quantum-gravity approaches which are being pursued is reflected
in the test theory.

One reasonable possibility to consider, when the urge to analyze data that
involve some contamination from dynamics cannot be resisted, is the one of
describing dynamics within the framework of low-energy effective field theory.
In this subsection I want to discuss a test theory which is indeed based on low-
energy effective field theory, and has emerged from the work recently reported
in [86] (which is rooted in part in the earlier [56]).

Before a full characterization of this test theory I should first warn the
reader that there might be some severe limitations for the applicability of
low-energy effective field theory to the investigation of Planck-scale physics,
especially when departures from Lorentz symmetry are present.

A significant portion of the quantum-gravity community is in general, jus-
tifiably, skeptical about the results obtained using low-energy effective field
theory in analyzes relevant for the quantum-gravity problem. After all the
first natural prediction of low-energy effective field theory in the gravitational
realm is a value of the energy density which is some 120 orders of magnitude
greater than allowed by observations9. Somewhat related to this “cosmolog-
ical constant problem” is the fact that a description of possible Planck-scale
departures from Lorentz symmetry within effective field theory can only be
9 And the outlook of low-energy effective field theory in the gravitational realm

does not improve much through the observation that exact supersymmetry could
protect from the emergence of any energy density. In fact, Nature clearly does
not have supersymmetry at least up to the TeV scale, and this would still lead
to a natural prediction of the cosmological constant which is some 60 orders of
magnitude too high.
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developed with a rather strongly pragmatic attitude; in fact, while one can
introduce Planck-scale suppressed effects at tree level, one expects that loop
corrections would typically lead to inadmissibly large departures from or-
dinary Lorentz symmetry. Indeed some studies, notably [87, 88], have shown
mechanisms such that, within an effective-field-theory formulation, loop effects
would lead to inadmissibly large departures from ordinary Lorentz symmetry,
which could be avoided only by introducing a large level of fine tuning.

It is rather amusing that alongside with numerous researchers who are
skeptical about any results obtained using low-energy effective field theory in
analyzes relevant for the quantum-gravity problem, there are also quite a few
researchers interested in the quantum-gravity problem who are completely
serene in assuming that all quantum-gravity effects should be describable in
terms of effective field theory in low-energy situations. The (quasi-)rationale
behind this assumption is that field theory works well at low energies with-
out gravity, and quantum gravity of course must reproduce field theory in
an appropriate limit, so one might expect that at least at low energies the
quantum-gravity effects could be described in the language of field theory as
correction terms to be added to standard lagrangians.

I feel that, while of course an effective-field-theory description may well
turn out to be correct in the end, the a priori assumption that a description
in terms of effective low-energy field-theory should work is rather naive. If
the arguments that encourage the use of new descriptions of dynamics at the
Planck scale are correct, then a sort of “order of limits problem” clearly arises.
Our experiments will involve energies much lower than the Planck scale, and
we know that in some limit (a limit that characterizes our most familiar obser-
vations) the field-theoretic description and Lorentz invariance will hold. So we
would need to establish whether experiments that are sensitive to Planck-scale
departures from Lorentz symmetry could also be sensitive to Planck-scale de-
partures from the field-theoretic description of dynamics. As an example, let
me mention the possibility (not unlikely in a context which is questioning the
fate of Lorentz symmetry) that quantum gravity would admit a field-theory-
type description only in reference frames in which the process of interest is
essentially occurring in its center of mass (no “Planck-large boost” [89] with
respect to center-of-mass frame). The field theoretic description could emerge
in a sort of “low-boost limit”, rather than the expected low-energy limit. The
regime of low boosts with respect the center-of-mass frame is often indistin-
guishable with respect to the low-energy limit. For example, from a Planck-
scale perspective, our laboratory experiments (even the ones conducted at,
e.g. CERN, DESY, SLAC...) are both low-boost (with respect to the center
of mass frame) and low-energy. However, the “UHE cosmic-ray paradox”, for
which a quantum-gravity origin has been conjectured (see later), occurs in
a situation where all the energies of the particles are still tiny with respect
to the Planck energy scale, but the boost with respect to the center-of-mass
frame (as measured by the ratio E/mproton between the proton energy and
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the proton mass) could be considered to be “large” from a Planck-scale per-
spective (E/mproton � Ep/E).

These concerns are strengthen by looking at the literature available on the
quantum pictures of spacetime that provide motivation for the study of mod-
ified dispersion relations, which usually involve either noncommutative geom-
etry or Loop Quantum Gravity, where, as mentioned, the outlook of a low-
energy effective-field-theory description is not encouraging. The construction
of field theories in noncommutative spacetimes requires the introduction of
several new technical tools, which in turn lead to the emergence of several new
physical features, even at low energies. I guess that these difficulties arise from
the fact that a spacetime characterized by an uncertainty relation of the type
δx δy ≥ θ(x, y) never really behaves has a classical spacetime, not even at very
low energies. In fact, some low-energy processes will involve soft momentum
exchange in the x direction (large δx) which however is connected with the
exchange of a hard momentum in the y direction (δy ≥ θ/δx), and this fea-
ture cannot be faithfully captured by our ordinary field-theory formalisms. In
the case of canonical noncommutative spacetimes one does obtain a plausible-
looking field theory [65], but the results actually show that it is not possible
to rely on an ordinary effective low-energy quantum-field-theory description.
In fact, the “IR/UV mixing” [64, 65, 66] is such that the high-energy sector
of the theory does not decouple from the low-energy sector, and this in turn
affects very severely [66] the outlook of analyzes based on an ordinary effective
low-energy quantum-field-theory description. For other (non-canonical) non-
commutative spacetimes we are still struggling in the search of a satisfactory
formulation of a quantum field theory [71, 72], and it is at this point legitimate
to suspect that such a formulation of dynamics in those spacetimes does not
exist.

Incidentally let me observe that the issues encountered in dealing with the
IR/UV mixing may be related to my concerns about the large-boost limit
of quantum gravity. In a theory with IR/UV mixing nothing peculiar might
be expected for, say, a collision between two photons both of MeV energy,
but the boosted version of this collision, where one photon has, say, energy
of 100 TeV and the other photon has energy of 10−2 eV, could be subject to
the IR/UV mixing effects, and be essentially untreatable from a low-energy
effective-field-theory perspective.

And noncommutative spacetimes are not the only cases where an ordinary
field-theory description may be inadequate. As mentioned, the assumption of
availability of an ordinary effective low-energy quantum-field-theory descrip-
tion finds also no support in Loop Quantum Gravity. Indeed, so far, in Loop
Quantum Gravity all attempts to find a suitable limit of the theory which can
be described in terms of a quantum-field-theory in background spacetime have
failed. And on the basis of the recent results of [78] it appears plausible that in
several contexts in which one would naively expect a low-energy field theory
description Loop Quantum Gravity might instead require a density-matrix
description.
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Of course, in phenomenology this type of concerns can be set aside, since
one is primarily looking for confrontation with experimental data, rather than
theoretical prejudice. It is clearly legitimate to set up a test theory exploring
the possibility of Planck-scale departures from Lorentz symmetry within the
formalism of low-energy effective field theory. But one must then keep in mind
that the implications for most quantum-gravity research lines of the experi-
mental bounds obtained in this way might be very limited. This will indeed be
the case if we discover that, as some mentioned preliminary results suggest,
the limit in which the full quantum-gravity theory reproduces a description
in terms of effective field theory in classical spacetime is also the limit in which
the departures from Lorentz symmetry must be neglected.

Having provided this long warning, let me now proceed to a character-
ization of the test theory which I see emerging from the works reported in
[56, 86]. These studies explore the possibility of a linear-in-Lp modification of
the dispersion relation

m2 � E2 − p2 + ηp2LpE , (17)

i.e. the case n = 1 of (12). The key assumption in [86, 56] is that such modi-
fications of the dispersion relation should be introduced consistently with an
effective low-energy field-theory description of dynamics. The implications of
this assumption were explored in particular for fermions and photons. It be-
came quickly clear that in such a setup universality cannot be assumed, since
one must at least accommodate a polarization dependence for photons: in the
field-theoretic setup it turns out that when right-circular polarized photons
satisfy the dispersion relation E2 � p2 +ηγp3 then necessarily left-circular po-
larized photons satisfy the “opposite sign” dispersion relation E2 � p2−ηγp3.
For spin-1/2 particles the analysis reported in [86] does not necessarily sug-
gest a similar helicity dependence, but of course in a context in which photons
experience such a complete correlation of the sign of the effect with polariza-
tion it would be awkward to assume that instead for electrons the effect is
completely helicity independent. One therefore introduces two independent
parameters η+ and η− to characterize the modification of the dispersion rela-
tion for electrons.

In the following I will refer to this test theory as the “GPMP test theory”
(from the initials of the authors of [86, 56]), and I will assume that experimen-
tal bounds on this test theory should be placed by using only the following
assumptions:

(GPMP.1) for right-circular polarized photons are governed by the disper-
sion relation

m2 � E2 − p2 + ηγp2

(
E

Ep

)

, (18)

while left-circular polarized photons are governed by the dispersion relation

m2 � E2 − p2 − ηγp2

(
E

Ep

)

; (19)
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(GPMP.2) for fermions the dispersion relation takes the form

m2 � E2 − p2 + ηa
Rp2

(
E

Ep

)

, (20)

in the positive-helicity case, while for negative-helicity fermions

m2 � E2 − p2 + ηa
Lp2

(
E

Ep

)

; (21)

the index a here reflecting a possible particle dependence;
(GPMP.3) dynamics is described in terms of effective low-energy field

theory.

4.8 The Minimal GPMP Test Theory

As in the case of the AEMNS test theory, while a large parameter space should
be considered in order to achieve full generality, it appears wise to first focus
the phenomenology on a reduced version of the test theory, reflecting some
natural physical assumptions. As in the case of the AEMNS test theory, a
reduced two-parameter space would be ideal for the first-level description of
the gradual improvement of the experimental sensitivities. As usual, once the
reduced version of the test theory is falsified one can contemplate its possible
generalization (if the developments on the pure-theory side still justify such
an effort from the perspective of falsification of the theories).

In introducing a reduced GPMP test theory I believe that a key point of
naturalness comes from the observation that the effective-field-theory setup
imposes for photons a modification of the dispersion relation which has the
same magnitude for both polarizations but opposite sign: it is then natural to
give priority to the hypothesis that for fermions a similar mechanism would
apply, i.e. the modification of the dispersion relation should have the same
magnitude for both signs of the helicity, but have a correlation between the
sign of the helicity and the sign of the dispersion-relation modification. This
would correspond to the natural-looking assumption that the Planck-scale
effects are such that in a beam composed of randomly selected particles the
average speed in the beam is still governed by ordinary special relativity (the
Planck scale effects average out summing over polarization/helicity).

A further “natural” reduction of the parameter space is achieved by assum-
ing that all fermions are affected by the same modification of the dispersion
relation.

The reduced GPMP test theory that emerges from this requirements is
perhaps the most natural among the possible two-parameter reduction of the
GPMP test theory. In the following I refer to this reduced GPMP test the-
ory as the “minimal GPMP test theory”10, characterized by the following
ingredients:
10 Whereas for the AEMNS test theory there is clearly only one obvious way to set

up the reduction to a two-dimensional parameter space, within the GPMP test
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(minGPMP.1) right-circular polarized photons are governed by the disper-
sion relation

m2 � E2 − p2 + ηγp2

(
E

Ep

)

, (22)

while left-circular polarized photons are governed by the dispersion relation

m2 � E2 − p2 − ηγp2

(
E

Ep

)

; (23)

(minGPMP.2) for fermions the dispersion relation takes the form

m2 � E2 − p2 + ηfp2

(
E

Ep

)

, (24)

in the positive-helicity case, while for negative-helicity fermions

m2 � E2 − p2 − ηfp2

(
E

Ep

)

, (25)

with the same value of ηf for all fermions;
(minGPMP.3) dynamics is described in terms of effective low-energy field

theory.

4.9 Derivation of Limits from Analysis of Gamma-Ray Bursts

Both in the AEMNS test theory and in the GPMP test theory one expects a
wavelength dependence of the speed of photons, by combining the modified
dispersion relation and the relation v = dE/dp. At “intermediate energies”
(m < E � Ep) this velocity law will take the form

v � 1 − m2

2E2
+ η
n+ 1

2
En

En
p

. (26)

Whereas in ordinary special relativity two photons (m = 0) emitted simulta-
neously would always reach simultaneously a far-away detector, according to
(26) two simultaneously-emitted photons should reach the detector at differ-
ent times if they carry different energy. Moreover, in the case of the GPMP
test theory even photons with the same energy would arrive at different times
if they carry different polarization. In fact, while the minimal AEMNS test
theory assumes universality, and therefore a formula of this type would ap-
ply to photons of any polarization, in the GPMP test theory, as mentioned,

theory, with its automatic polarization dependence of the effects for photons, one
could probably envision more than one way to set up the reduction to a two-
dimensional parameter space. In a certain sense the two-dimensional parameter
space on which I propose to focus for the AEMNS test theory is the minimal
AEMNS test theory, whereas here I am proposing a minimal GPMP test theory.
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the sign of the effect is correlated with polarization. As a result, while the
AEMNS test theory is best tested by comparing the arrival times of particles
of different energies, the GPMP test theory is best tested by considering the
highest-energy photons available in the data and looking for a sizeable spread
in times of arrivals (which one would then attribute to the different speeds of
the two polarizations).

This time-of-arrival-difference effect can be significant [38, 39] in the analy-
sis of short-duration gamma-ray bursts that reach us from cosmological dis-
tances. For a gamma-ray burst it is not uncommon that the time travelled
before reaching our Earth detectors be of order T ∼ 1017 s. Microbursts within
a burst can have very short duration, as short as 10−3 s (or even 10−4 s), and
this means that the photons that compose such a microburst are all emitted
at the same time, up to an uncertainty of 10−3 s. Some of the photons in these
bursts have energies that extend at least up to the GeV range. For two pho-
tons with energy difference of order ∆E ∼ 1 GeV a η∆E/Ep speed difference
over a time of travel of 1017 s would lead to a difference in times of arrival of
order

∆t ∼ ηT∆ E
Ep

∼ 10−2s , (27)

which is significant (the time-of-arrival differences would be larger than the
time-of-emission differences within a single microburst).

For the AEMNS test theory the Planck-scale-induced time-of-arrival differ-
ence could be revealed [38, 39] upon comparison of the “average arrival time”
of the gamma-ray-burst signal (or better a microburst within the burst) in
different energy channels. The GPMP test theory would be most effectively
tested by looking for a dependence of the time-spread of the bursts that grows
with energy (at low energies the effect is anyway small, so the polarization
dependence is ineffective, whereas at high energies the effect may be nonnegli-
gible and an overall time-spread of the burst could result from the dependence
of speed on polarization).

The sensitivities achievable [90] with the next generation of gamma-ray
telescopes, such as GLAST [90], could allow to test very significantly (26) in
the case n = 1, by possibly pushing the limit on η far below 1 (whereas the
effects found in the case n = 2, |η| ∼ 1 are too small for GLAST). Whether or
not these levels of sensitivity to the Planck-scale effects are actually achieved
may depend on progress in understanding other aspects of gamma-ray-burst
physics. In fact, the Planck-scale-effect analysis would be severely affected
if there were poorly understood at-the-source correlations between energy of
the photons and time of emission. In the recent [91] it was emphasized that it
appears that one can infer such an energy/time-of-emission correlation from
available gamma-ray-burst data. The studies of Planck-scale effects will be
therefore confronted with a severe challenge of “background/noise removal”.
At present it is difficult to guess whether this problem can be handled suc-
cessfully. We do have a good card to play in this analysis: the Planck-scale
picture predicts that the times of arrival should depend on energy in a way
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that grows in exactly linear way with the distance of the source. One may
therefore hope that, once a large enough sample of gamma-ray bursts (with
known source distances) becomes available, one might be able disentangle the
Planck-scale propagation effect from the at-the-source background.

An even higher sensitivity to possible Planck-scale modifications of the ve-
locity law could be achieved by exploiting the fact that, according to current
models [92], gamma-ray bursters should also emit a substantial amount of
high-energy neutrinos. Some neutrino observatories should soon observe neu-
trinos with energies between 1014 and 1019 eV, and one could, for example,
compare the times of arrival of these neutrinos emitted by gamma-ray bursters
to the corresponding times of arrival of low-energy photons. One could use
this strategy to test rather stringently11 the case of (26) with n = 1, an even
perhaps gain some access to the investigation of the case n = 2.

In order to achieve these sensitivities with neutrino studies once again
some technical and conceptual challenges should be overcome. Also this type
of analysis requires an understanding of gamma-ray bursters good enough
to establish whether there are typical at-the-source time delays. The analy-
sis would loose much of its potential if one cannot exclude some systematic
tendency of gamma-ray bursters to emit high-energy neutrinos with, say, a
certain delay with respect to microbursts of photons. But also in this case
one could hope to combine several observations from gamma-ray bursters at
different distances in order to disentangle the possible at-the-source effect.

4.10 Derivation of Limits from Analysis of UHE Cosmic Rays

With a given dispersion relation and a given rule for energy-momentum con-
servation one has a complete “kinematic scheme” for the analysis of the kine-
matical requirements for particle production in collisions or decay processes.
Both the AEMNS test theory and the GPMP test theory involve modified
dispersion relations and unmodified laws of energy-momentum conservation
(the fact that the law of energy-momentum conservation is not modified is ex-
plicitly among the ingredients of the AEMNS test theory, while in the GPMP
test theory it follows from the adoption of low-energy effective field theory).

In these lectures I am not discussing in detail the case of modified disper-
sion relations introduced within a “doubly-special relativity” scenario [53, 70].
For clarity of the presentation, I thought it would be best to limit to two the
number of test theories I consider. Test theories for doubly-special relativity
scenarios with modified dispersion relations are under consideration (see, e.g.,
[93]), but I will not make room for them here. It is appropriate however to
11 Note however that in an analysis mixing the properties of different particles the

sensitivity that can be achieved will depend strongly on whether universality of
the modification of the dispersion relation is assumed. For example, for the GPMP
test theory a comparison of times of arrival of neutrinos and photons could only
introduce a bound on some combination of the dispersion-relation-modification
parameters for the photon and for the neutrino sectors.
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stress here that the assumption of modified dispersion relations and unmod-
ified laws of energy-momentum conservation is inconsistent with the doubly-
special relativity principles, since it inevitably [53] gives rise to a preferred
class of inertial observers. A doubly-special relativity scenario with modified
dispersion relations must necessarily have a modified law of energy-momentum
conservation.

Going back to the AEMNS and GPMP test theories which I am consider-
ing, in this subsection I want to stress that combining a modified dispersion
relation with unmodified laws of energy-momentum conservation one natu-
rally finds a modification of the threshold requirements for certain particle-
producing processes. Let us for example consider, from the AEMNS perspec-
tive, the dispersion relation (12), with n = 1, in the analysis of a collision
between a soft photon of energy ε and a high-energy photon of energy E
that creates an electron-positron pair: γγ → e+e−. For given soft-photon en-
ergy ε, the process is allowed only if E is greater than a certain threshold
energy Eth which depends on ε and m2

e. For n = 1, combining (12) with
unmodified energy-momentum conservation, this threshold energy (assuming
ε� me � Eth � Ep) is estimated as

Ethε+ η
E3

th

8Ep
= m2

e . (28)

The special-relativistic result Eth = m2
e/ε corresponds of course to the η → 0

limit of (28). For |η| ∼ 1 the Planck-scale correction can be safely neglected
as long as ε > (m4

e/Ep)1/3. But eventually, for sufficiently small values of ε
and correspondingly large values of Eth, the Planck-scale correction cannot
be ignored [46, 47, 48, 49, 50]

And the process γγ → e+e− is not the only case in which this type of
Planck-scale modification can be important. There has been strong inter-
est [45, 46, 47, 48, 49, 50, 51, 94] in “photopion production”, pγ → pπ, where
again the combination of (12) with unmodified energy-momentum conserva-
tion leads to a modification of the minimum proton energy required by the
process (for fixed photon energy). In the case in which the photon energy is
the one typical of CMBR photons one finds that the threshold proton en-
ergy can be significantly shifted upward (for negative η), and this in turn
should affect at an observably large level the expected “GZK cutoff” for the
observed cosmic-ray spectrum. Observations reported by the AGASA [95]
cosmic-ray observatory provide some encouragement for the idea of such an
upward shift of the GZK cutoff, but the issue must be further explored. Forth-
coming cosmic-ray observatories, such as Auger [96], should be able [45, 48]
to fully investigate this possibility.

In this context the comparison of the AEMNS test theory and the GPMP
test theory is rather straightforward. We are in fact considering a purely kine-
matical effect: the shift of a threshold requirement. For the minimal AEMNS
test theory there is a clear prediction that for negative η there should be an
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upward shift of the GZK threshold. For the GPMP test theory one would pre-
dict an increase of the GZK threshold if any one (or both) of the two helicities
of the proton has dispersion relation of “negative η” type. If both helicities
have dispersion relation of negative-η type then the effect looks rather simi-
lar to the corresponding effect in the AEMNS test theory. For the situation
which I proposed as the “minimal GPMP test theory”, where for one of the
helicities the dispersion relation is of negative-η type and for the other helic-
ity the dispersion relation is of positive-η type, one would expect roughly one
half of the UHE protons to evade the GZK cutoff, so the cutoff would still be
violated but in a softer way than in the case of the AEMNS test theory with
negative η.

It appears likely that, if the Auger data should actually show evidence of
the expected GZK cutoff, we would then be in a position to rule out the case
of negative η for the minimal AEMNS test theory, and to rule out both the
positive-ηf and negative-ηf case for the minimal GPMP test theory. In fact, in
the minimal AEMNS test theory violations of the GZK cutoff are predicted
for negative η (while they are not present in the positive-η case), while in
the minimal GPMP test theory violations of the GZK cutoff (although less
numerous than expected in the minimal AEMNS test theory with negative η)
are always expected, independently of the sign of ηf (depending on the sign
of ηf the protons that violate the GZK cutoff would have a corresponding
helicity).

I should stress that these studies of the cosmic-ray GZK threshold pro-
vide an example in which the fact that we do not really identify some of the
particles in the relevant particle-physics processes, an analysis which could in
principle be involving pure kinematics, ends up being exposed to the risk of
contamination from some aspects of dynamics. If the only background radia-
tion available for photopion production was the CMBR, then the prediction
of an upward shift of the GZK cosmic-ray cutoff within the AEMNS test the-
ory, for negative η, would be completely robust. But background radiation
has many components and one could contemplate the possibility to combine
AEMNS kinematics with an unspecified description of dynamics such that
interactions of cosmic rays with other components of the background radia-
tion would lead to a net result that does not change the numerical value of
the GZK threshold. While this possibility must be contemplated, I also want
to stress that, at least for n = 1 and negative η of order 1, this “conspiracy
scenario” is so unbelievable that it should be dismissed. In fact, for n = 1 and
negative η of order 1 the AEMNS kinematics allows the interaction of cosmic
rays only with photons of energy higher than the TeV scale (see [48]), and
the density of such high-energy background photons is so low that, even in a
prudent phenomenology, this “conspiracy scenario” can indeed be dismissed.

For the GPMP test theory there is of course no issue of possible conspir-
acies, since the field-theoretic setup allows to evaluate cross sections.



92 G. Amelino-Camelia

4.11 Derivation of Limits from Analysis of Photon Stability

As in the case of the GZK cutoff for UHE cosmic rays there are several ex-
amples in which a given process is allowed in presence of exact Lorentz sym-
metry but can be kinematically forbidden in presence of certain departures
from Lorentz symmetry. The opposite is also possible: some processes that are
kinematically forbidden in presence of exact Lorentz symmetry become kine-
matically allowed in presence of certain departures from Lorentz symmetry.
The fact that a process is kinematically allowed of course does not guarantee
that it occurs at an observable rate: it depends on the laws of dynamics and
the amplitudes they predict.

Certain observations in astrophysics, which allow us to establish that pho-
tons of energies up to ∼1014 eV are not unstable, can be particularly use-
ful [49, 50, 51, 97] in setting limits on some schemes for departures from
Lorentz symmetry. Let us for example analyze the process γ → e+e− from
the AEMNS perspective, using the dispersion relation (12), with n = 1, and
unmodified energy-momentum conservation. One easily finds a relation be-
tween the energy Eγ of the incoming photon, the opening angle θ between the
outgoing electron-positron pair, and the energy E+ of the outgoing positron
(of course the energy of the outgoing electron is simply given by Eγ − E+).
For the region of phase space with me � Eγ � Ep this relation takes the
form

cos(θ)� E+(Eγ − E+) +m2
e − ηEγE+(Eγ − E+)/Ep

E+(Eγ − E+)
, (29)

where me is the electron mass.
The fact that for η = 0 (29) would require cos(θ) > 1 reflects the fact that,

if Lorentz symmetry is preserved, the process γ → e+e− is kinematically
forbidden. For η < 0 the process is still forbidden, but for positive η high-
energy photons can decay into an electron-positron pair. In fact, for Eγ �
(m2

eEp/|η|)1/3 one finds that there is a region of phase space where cos(θ) < 1,
i.e. there is a physical phase space available for the decay.

The energy scale (m2
eEp)1/3 ∼ 1013 eV is not too high for testing, since, as

mentioned, in astrophysics we see photons of energies up to ∼1014 eV that are
not unstable (they clearly travel safely some large astrophysical distances).

Within AEMNS kinematics, for n = 1 and positive η of order 1, it would
have been natural to expect that such photons with ∼1014 eV energy would
not be stable. Once again, before claiming that n = 1 and positive η of or-
der 1 is ruled out, one should be concerned about possible conspiracies. The
fact that the decay of 1014 eV photons is allowed by AEMNS kinematics (for
n = 1 and positive η of order 1) of course does not guarantee that these pho-
tons should rapidly decay. It depends on the relevant probability amplitude,
whose evaluation goes beyond the reach of kinematics. I am unable to provide
an intuition for how big of a conspiracy would be needed to render 1014 eV
photons stable compatibly with AEMNS kinematics with n = 1 and η = 1.



Introduction to Quantum-Gravity Phenomenology 93

My tentative conclusion is that n = 1 with positive η of order 1 is ruled out
“up to conspiracies”, but unlike the case of the GZK-threshold analysis I am
unprepared to argue that the needed conspiracy is truly unbelievable.

For the GPMP test theory the photon stability analysis is weakened be-
cause of other reasons. There one does have the support of the effective-field-
theory description of dynamics, and within that framework one can exclude
huge suppression by Planck scale effects of the interaction vertex needed for
γ → e+e− around ∼1013 eV, ∼1014 eV. So the limit-setting effort is not weak-
ened by the absence of an interaction vertex. However, as mentioned, consis-
tency with the effective-field-theory setup requires that the two polarizations
of the photon acquire opposite-sign modifications of the dispersion relation.
We observe in astrophysics some photons of energies up to ∼1014 eV that are
stable over large distances, but as far as we know those photons could be
all, say, right-circular polarized (or all left-circular polarized). I postpone a
detailed analysis to future work, but let me note here that there is a region
of minimal-GPMP parameter space where both polarizations of a ∼1014 eV
photon are unstable (a subset of the region with |ηf | > |ηγ |). That region of
the minimal-GPMP parameter parameter space is of course excluded by the
photon-stability data.

4.12 Derivation of Limits from Analysis
of Synchrotron Radiation

A recent series of papers [85, 98, 99, 100, 101, 102, 103] has focused on the
possibility to set limits on Planck-scale modified dispersion relations focusing
on their implications for synchrotron radiation. By comparing the content of
the first estimates12 produced in this research line [98] with the understanding
that emerged from follow-up studies [85, 99, 100, 101, 102, 103] one can gain
valuable insight on the risks involved in analyzes based on simplistic order-
of-magnitude estimates, rather than careful comparison with meaningful test
theories. In [98] the starting point is the observation that in the conventional
(Lorentz-invariant) description of synchrotron radiation one can estimate the
characteristic energy Ec of the radiation through a heuristic analysis [104]
leading to the formula

Ec � 1
R·δ·[vγ − ve] , (30)

where ve is the speed of the electron, vγ is the speed of the photon, δ is an
angle obtained from the opening angle between the direction of the electron
12 Reference [98] is at this point obsolete, since the relevant manuscript has been

revised for the published version [100] and the recent [103] provides an even more
detailed analysis. It is nevertheless useful to consider this series of manuscripts
[98, 100, 103] as an illustration of how much the outlook of a phenomenologi-
cal analysis may change in going from the level of simplistic order-of-magnitude
estimates to the level of careful comparison with meaningful test theories.
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and the direction of the emitted photon, and R is the radius of curvature of
the trajectory of the electron.

Assuming that the only Planck-scale modification in this formula should
come from the velocity law (described using v = dE/dp in terms of the mod-
ified dispersion relation), one finds that in some instances the characteristic
energy of synchrotron radiation may be significantly modified by the presence
of Planck-scale departures from Lorentz symmetry. As an opportunity to test
such a modification of the value of the synchrotron-radiation characteristic
energy one can hope to use some relevant data [98, 100] on photons detected
from the Crab nebula. This must be done with caution since the observational
information on synchrotron radiation being emitted by the Crab nebula is
rather indirect: some of the photons we observe from the Crab nebula are
attributed to synchrotron processes on the basis of a promising conjecture,
and the value of the relevant magnetic fields is also conjectured (not directly
measured).

Assuming that indeed the observational situation has been properly inter-
preted, and relying on the mentioned assumption that the only modification
to be taken into account is the one of the velocity law, one could basically
rule out [98] the case n = 1 with negative η for a modified dispersion relation
of the type (12).

This observation led at first to some excitement, but more recent papers
are starting to adopt a more prudent viewpoint. The lack of comparison with
a meaningful test theory represents a severe limitation of the original analysis.
In particular, synchrotron radiation is due to the acceleration of the relevant
electrons and therefore implicit in the derivation of the formula (30) is a
subtle role for dynamics [99]. From a field-theory perspective the process of
synchrotron-radiation emission can be described in terms of Compton scatter-
ing of the electrons with the virtual photons of the magnetic field. One would
therefore be looking deep into the dynamical features of the theory.

The minimal AEMNS test theory does assume a modified dispersion re-
lation of the type (12) universally applied to all particles, but it is a pure-
kinematics framework and, since the analysis crucially involves some aspects
of dynamics, it cannot be tested using a Crab-nebula synchrotron-radiation
analysis.

The GPMP test theory relies on a description of dynamics within the
framework of effective low-energy theory, but, as mentioned, this in turn ends
up implying that it is not possible to assume that a dispersion relation of
the type (12) universally applies to all particles. Actually the two polariza-
tions of photons must, within this framework, satisfy different (opposite-sign
Planck-scale corrections) dispersion relations. And for the description of elec-
trons one naturally encounters at least two more free parameters. The only
constraint that one could conceivably obtain for the GPMP test theory from
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the Crab-nebula synchrotron-radiation analysis would simply exclude13 that
both the electron-dispersion-relation parameters be negative (i.e. exclude that
both helicities of the electron would be characterized by a dispersion relation
of the type (12) with negative η and n = 1).

In particular, the case which I characterized as the “minimal GPMP test
theory”, where the two helicities of the electrons carry opposite-sign mod-
ifications of the dispersion relation, would automatically evade this type of
constraint from the Crab-nebula synchrotron-radiation analysis (since the two
helicities are affected by opposite-sign modifications of the dispersion relation,
at least one of them must be a positive-sign-type modification).

5 Summary and Outlook

Quantum-Gravity Phenomenology has already reached its first goal: a size-
able community now works on the quantum-gravity problem with the aware-
ness that there is a chance to test (at least some) Planck-scale effects. In
reaching this first goal it was sufficient (and even, in a certain sense, neces-
sary) to proceed with simple intuitive arguments, but the further develop-
ment of quantum-gravity phenomenology requires us to adopt the standards
of other branches of phenomenology, such as particle-physics phenomenology.
In particular, the progress of experimental limits must be charted in terms of
commonly-adopted, and carefully crafted, test theories of the new Planck-scale
effects.

The fact that some Planck-scale pictures of spacetime physics are falsifi-
able is more and more robustly established, but in many cases we only see
a path toward falsifiability rather having achieved already the results needed
for a “critical test of a theory” (a test that could be used, in case of contrary
experimental results, to discard the relevant Planck-scale picture of spacetime
physics). This point of the falsifiability of some relevant theories is crucial for
establishing quantum-gravity research as a truly scientific endeavor. The pro-
posal of test theories must of course reflect the status of our analysis of the
falsifiability of quantum-spacetime/quantum-gravity theories. In an appro-
priate sense the test theories must bridge the gap between quantum-gravity
theories and experiments. They must be such that the experimental limits on
the parameters of the test theories will naturally translate into direct limits on
some relevant quantum-gravity theories, as soon as some falsifiable features
of the quantum-gravity theory are fully established.

It is of course meaningless to compare limits obtained within different test
theories. And there is no scientific content in an experimental limit claimed
13 Even the possibility to derive any sort of constraint on the electron-dispersion-

relation parameters is not guaranteed. In fact, as observed in the latest version
of [103], one might be unable to exclude the possibility that the Crab-nebula
synchrotron radiation be due to positron (rather than electron) acceleration.
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on a vaguely defined test theory. For example, in the recent literature there
has been a proliferation of papers claiming to improve limits on Planck-scale
modifications of the dispersion relation, but the different studies were simply
considering the same type of dispersion relation within significantly different
test theories. These results, which were presented as a gradual improvement
in the experimental limits on Planck-scale modifications of the dispersion
relation, were actually only a series of papers proposing more and more (some
better, some worse) different examples of test theories in which a Planck-scale
modification of the dispersion relation can be accommodated. Each paper
was proposing a different test theory and deriving limits on that specific test
theory.

In order to illustrate these issues in the context of a specific example of
quantum-gravity-phenomenology work, in the second part of these lectures I
focused on the example of the phenomenology of Planck-scale modifications of
the dispersion relation. I considered two examples of test theories, the AEMNS
test theory and the GPMP test theory. These two test theories, although
usually not explicitly fully characterized in the relevant papers, are among
the most studied in the case of Planck-scale modifications of the dispersion
relation.

I also stressed that a phenomenology should build its strength gradually.
Within a given set of hypothesis one first sets up a reduced parameter space,
and only once that reduced parameter space is ruled out by data one consid-
ers the possibility of wider parameter spaces. In the context here of interest
the minimal AEMNS test theory, described in Subsect. 4.6, and the mini-
mal GPMP test theory, described in Subsect. 4.8, appear to provide valuable
starting points.

In particular, these two test theories can be representative of two types
of attitudes that are emerging in the quantum-gravity-phenomenology com-
munity concerning the possibility of describing dynamical effects within the
framework of effective low-energy field theory. The fact that both in the study
of noncommutative spacetimes and in the study of Loop Quantum Gravity, the
two quantum pictures of spacetime that provide the key sources of motivation
for research on Planck-scale modifications of the dispersion relation, we are
really only starting to understand some aspects of kinematics, but we are still
missing any robust result on dynamics, encourages an approach to phenom-
enology which is correspondingly prudent with respect to the description of
dynamics. The phenomenologist is therefore confronted with two options: For
those who are most concerned about the status of the description of dynamics,
the pure-kinematics minimal AEMNS test theory provides a rather reasonable
starting point for phenomenology work. For those who are willing to set aside
these concerns, and go ahead with the effective-field-theory description, the
minimal GPMP test theory could provide a valuable starting point. It is in-
teresting that, while the phenomenology based on pure kinematics is allowed
to start with the assumption of full universality of the modification of the
dispersion relation, the choice of describing dynamics in terms of an effective
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low-energy field theory forces upon us from the very beginning a nonuniver-
sality of the effects, with the correlation between polarization and sign of the
modification for photons (and, with the additional natural assumption of no
net effect on randomly composed beams, one then can introduce for fermions
ana analogous correlation between helicity and sign of the modification). This
plays a key role in the phenomenology.

In the Subsects. 4.9, 4.10, 4.11, 4.12 I have considered a few examples of
phenomenological analyzes which exposed very clearly the type of differences
that one can encounter comparing the indications of preliminary sensitivity
estimates and the outcome of more robust analyzes supported by test theories.
The time-of-travel analyzes described in Subsect. 4.9 can be used to constrain
the photon dispersion relation both in the AEMNS and in the GPMP test
theory, but the strategy may be somewhat different: while in the AEMNS
test theory one can only exploit the energy dependence of the new effects,
in the GPMP test theory the additional polarization dependence can also be
exploited. The type of analysis of the cosmic-ray spectrum described in Sub-
sect. 4.10 is also applicable to both test theories, but also in that case some dif-
ferences must be taken into account. In particular, by obtaining good-quality
data on the cosmic-ray spectrum around the GZK scale we might be in a po-
sition to completely rule out the minimal GPMP test theory, and to rule out
the negative-η case for the minimal AEMNS test theory. The photon-stability
analysis described in Subsect. 4.11, which received much attention in the liter-
ature, actually turned out to be affected by severe limitations in constraining
the parameter spaces of the minimal AEMNS and the minimal GPMP test
theories: photon-stability analyzes must be treated prudently from a AEMNS
perspective because in principle kinematics is insufficient for establishing the
probability of particle decay (whereas kinematics is enough for establishing
stability), and photon-stability analyzes only lead to rather weak limits on
the minimal-GPMP parameter space because of the polarization dependence
expected in that test theory (one would need an ideally polarized beam of
ultra-high-energy photons in order to be able to infer some constraint on the
GPMP test theory). The Crab-nebula synchrotron-radiation analysis, whose
preliminary analysis had also raised high hopes, when set up within the test
theories here of interest also proves to be largely ineffective: it is not applicable
to the AEMNS test theory (once again because of the role that some aspects
of dynamics play in the analysis) and it also leads to no constraint on the
minimal GPMP test theory.

While, consistently with the objectives of these lectures, it was for me
sufficient here to discuss this comparison of test theories to data at a semi-
quantitative level, the striking results of this comparison, showing that the
analysis at the test-theory level can have very different outcome with respect
to the usual preliminary sensitivity estimates, should provide motivation for
future publications with detailed quantitative analyzes of the emerging exper-
imental bounds.
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This article reviews many of the observational constraints on Lorentz sym-
metry violation (LV). We first describe the GZK cutoff and other phenomena
that are sensitive to LV. After a brief historical sketch of research on LV, we
discuss the effective field theory description of LV and related questions of
principle, technical results, and observational constraints. We focus on con-
straints from high energy astrophysics on mass dimension five operators that
contribute to LV electron and photon dispersion relations at order E/MPlanck.
We also briefly discuss constraints on renormalizable operators, and review the
current and future constraints on LV at order (E/MPlanck)2.

1 Windows on Quantum Gravity?

In most fields of physics it goes without saying that observation and prediction
play a central role, but unfortunately quantum gravity (QG) has so far not
fit that mold. Many intriguing and ingenious ideas have been explored, but
it seems safe to say that without both observing phenomena that depend on
QG, and extracting reliable predictions from candidate theories that can be
compared with observations, the goal of a theory capable of incorporating
quantum mechanics and general relativity will remain unattainable.

Besides the classical limit, there is one observed phenomenon for which
quantum gravity makes a prediction that has received encouraging support:
the spectrum of primordial cosmological perturbations. The quantized lon-
gitudinal linearized gravitational mode, albeit slave to the inflaton and not
a dynamically independent degree of freedom, plays an essential role in this
story [1].
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What other types of phenomena might be characteristic of a quantum
gravity theory? Motivated by tentative theories, partial calculations, intima-
tions of symmetry violation, hunches, philosophy, etc, some of the proposed
ideas are: loss of quantum coherence or state collapse, QG imprint on initial
cosmological perturbations, scalar moduli or other new fields, extra dimen-
sions and low-scale QG, deviations from Newton’s law, black holes produced
in colliders, violation of global internal symmetries, and violation of spacetime
symmetries. It is this last item, more specifically the possibility of Lorentz vi-
olation (LV), that is the focus of these lecture notes.

From the observational point of view, developments are encouraging a
new look at the possibility of LV. Increased detector size, space-borne instru-
ments, technological improvement, and technique refinement are permitting
observations to probe higher energies, weaker interactions, lower fluxes, lower
temperatures, shorter time resolution, and longer distances. It comes as a wel-
come surprise that the day of true quantum gravity observations may not be
so far off [2].

2 Lorentz Violation

Lorentz symmetry is linked to a scale-free nature of spacetime: unbounded
boosts expose ultra-short distances, and yet nothing changes. However, sug-
gestions for Lorentz violation have come from: the need to cut off UV di-
vergences of quantum field theory and of black hole entropy, tentative calcu-
lations in various QG scenarios (e.g. semiclassical spin-network calculations
in Loop QG, string theory tensor VEVs, non-commutative geometry, some
brane-world backgrounds), and the possibly missing GZK cutoff [3] on ultra-
high energy (UHE) cosmic rays.

The GZK question has generated a lot of interest, and is currently the
only observational phenomenon thought to indicate a possible violation of
Lorentz symmetry. As an invitation to the subject, we discuss it in this section,
before embarking on the rest of the lectures. We also give a list of possible LV
phenomena, and a brief historical overview of the subject.

2.1 The GZK Cut-Off

In collisions of ultra high energy protons with cosmic microwave background
(CMB) photons there can be sufficient energy in the center of mass frame to
create a pion, leading to the the reaction

p+ γCMB → p+ π0 . (1)

The threshold occurs when the invariant magnitude of the total four mo-
mentum is the sum of the proton and pion mass, since at threshold these
particles are both at rest in the zero-momentum frame. That is, it occurs
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when (pp + pγ)2 = (mp + mπ)2, or pp · pγ = mpmπ + 1
2m

2
π, where pp,γ are

the proton and photon 4-momenta, and mp,π are the proton and pion mass.
Since Ep � mp, and mπ � 2mp, this yields the proton energy threshold

EGZK � mpmπ

2Eγ
� 3 × 1020eV ×

(
2.7K
Eγ

)

(2)

To get a definite number we have put Eγ equal to the energy of a photon
at the CMB temperature, 2.7 K, but of course the CMB contains photons of
higher energy,

This process degrades the initial proton energy with an attenuation length
of about 50 Mpc. Since plausible astrophysical sources for UHE particles are
located at distances larger than 50 Mpc, one expects a cutoff in the cosmic
ray proton energy spectrum, which occurs at around 5 × 1019 eV, depending
on the distribution of sources [4].

One of the experiments measuring the UHE cosmic ray spectrum, the
AGASA experiment, has not seen the cutoff. An analysis [6] from January
2003 concluded that the cutoff was absent at the 2.5 sigma level, while another
experiment, HiRes, is consistent with the cutoff but at a lower confidence level.
(For a brief review of the data see [4].) The question should be answered
in the near future by the AUGER observatory, a combined array of 1600
water Čerenkov detectors and 24 telescopic air fluorescence detectors under
construction on the Argentine pampas [7]. The new observatory will see an
event rate one hundred times higher, with better systematics.

Many ideas have been put forward to explain the possible absence of the
GZK cutoff [4]. For example the cosmic rays might originate closer, in some
unexpected way, by astrophysical acceleration or by decay of ultra-heavy ex-
otic particles, or they may be produced by collisions with ultra high energy
cosmic neutrinos. Virtually all of these explanations have problems.

In this context, it is intriguing to consider that with even a tiny amount of
Lorentz violation the energy threshold for the GZK reaction could be affected.
According to (2) the Lorentz invariant threshold is proportional to the proton
mass. Thus any LV term added to the proton dispersion relation E2 = p2 +
m2 will modify the threshold if it is comparable to or greater than m2

p at
around the energy EGZK . Modifying the proton and pion dispersion relations,
the threshold can be lowered, raised, or removed entirely, or even an upper
threshold where the reaction cuts off could be introduced (see e.g. [5] and
references therein).

For example, the LV term considered by Coleman and Glashow [8] was of
the form ηp2, assumed given in a reference frame close to that of the earth,
which is natural since we are close to being at rest in the universal rest frame.
This would affect the GZK threshold as long as η > (mp/EGZK)2 ∼ 10−22.
Even LV suppressed by two powers of the Planck mass M would affect the
threshold: a term of the form p4/M2 is comparable to m2

p when the proton
energy is (mpM)1/2 � 3×1018 eV, which is two orders of magnitude below the
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highest energy cosmic rays. Thus a missing GZK cutoff could be explained by
Planck double-suppressed LV. Conversely, observational confirmation of the
GZK cutoff can severely constrain such LV.

2.2 Possible LV Phenomena

Trans-GZK cosmic rays are not the only window of opportunity we have to
detect or constrain Lorentz violation induced by QG effects. In fact, many
phenomena accessible to current observations/experiments are sensitive to
possible violations of Lorentz invariance. A partial list is

– sidereal variation of LV couplings as the lab moves with respect to a pre-
ferred frame or directions, or cosmological variation

– long baseline dispersion and vacuum birefringence (e.g. of signals from
gamma ray bursts, active galactic nuclei, pulsars, galaxies)

– new reaction thresholds (e.g. photon decay, vacuum Čerenkov effect)
– shifted thresholds (e.g. photon annihilation from blazars, GZK reaction)
– maximum velocity (e.g. synchrotron peak from supernova remnants)
– dynamical effects of LV background fields (e.g. gravitational coupling and

additional wave modes)

2.3 A Brief History of Some LV Research

We conclude this section with a brief historical overview mentioning some of
the more influential papers, but by no means complete.

Suggestions of possible LV in particle physics go back at least to the 1960’s,
when a number of authors wrote on that idea [10]4. The possibility of LV in
a metric theory of gravity was explored beginning at least as early as the
1970’s [12]. Such theoretical ideas were pursued in the ’70’s and ’80’s notably
by Nielsen and several other authors on the particle theory side [13], and
by Gasperini [14] on the gravity side. A number of observational limits were
obtained during this period [16].

Towards the end of the 80’s Kostelecky and Samuel [17] presented evi-
dence for possible spontaneous LV in string theory, and motivated by this
explored LV effects in gravitation. The role of Lorentz invariance in the “trans-
Planckian puzzle” of black hole redshifts and the Hawking effect was empha-
sized in the early 90’s [18]. This led to study of the Hawking effect for quantum
fields with LV dispersion relations commenced by Unruh [19] and followed up
by others. Early in the third millennium this line of research led to work on
the related question of the possible imprint of trans-Planckian frequencies on
the primordial fluctuation spectrum [20]. Meanwhile the consequences of LV
4 Remarkably, already in 1972 Kirzhnits and Chechin [10] explored the possibil-

ity that an apparent missing cutoff in the UHE cosmic ray spectrum could be
explained by something that looks very similar to the recently proposed “doubly
special relativity” [11].
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for particle physics were being explored using LV dispersion relations e.g. by
Gonzalez-Mestres [21].

Four developments in the late nineties seem to have stimulated a surge of
interest in LV research. One was a systematic extension of the standard model
of particle physics incorporating all possible LV in the renormalizable sector,
developed by Colladay and Kostelecký [22]. That provided a framework for
computing the observable consequences for any experiment and led to much
experimental work setting limits on the LV parameters in the lagrangian [23].
On the observational side, the AGASA experiment reported events beyond
the GZK cutoff [24]. Coleman and Glashow then suggested the possibility that
LV was the culprit in the possibly missing GZK cutoff [8], and explored many
other high energy consequences of renormalizable, isotropic LV leading to
different limiting speeds for different particles [25]. In the fourth development,
it was pointed out by Amelino-Camelia et al. [26] that the sharp high energy
signals of gamma ray bursts could reveal LV photon dispersion suppressed by
one power of energy over the mass M ∼ 10−3MP, tantalizingly close to the
Planck mass.

Together with the improvements in observational reach mentioned earlier,
these developments attracted the attention of a large number of researchers to
the subject. Shortly after [26] appeared, Gambini and Pullin [27] argued that
semiclassical loop quantum gravity suggests just such LV. Some later work
supported this notion, but the issue continues to be debated [28, 29]. In any
case, the dynamical aspect of the theory is not under enough control at this
time to make any definitive statements concerning LV.

A very strong constraint on photon birefringence was obtained by Gleiser
and Kozameh [30] using UV light from distant galaxies. If the recent report[31]
of polarized gamma rays from a GRB turns out to be correct despite the
concerns of [32], this constraint will be further strengthened dramatically [33,
34]. Further stimulus came from the suggestion [35] that an LV threshold shift
might explain the apparent under-absorption on the cosmic IR background of
TeV gamma rays from the blazar Mkn501, however it is now believed by many
that this anomaly goes away when a corrected IR background is used [36].

The extension of the effective field theory framework to include LV di-
mension 5 operators was introduced by Myers and Pospelov [37], and used to
strengthen prior constraints. Also this framework was used to deduce a very
strong constraint [38] on the possibility of a maximum electron speed less than
the speed of light from observations of synchrotron radiation from the Crab
Nebula.

3 Theoretical Framework for LV

Various different theoretical approaches to LV have been taken to pursue the
ideas summarized above. Some researchers restrict attention to LV described
in the framework of effective field theory (EFT), while others allow for effects
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not describable in this way, such as those that might be due to stochastic
fluctuations of a “space-time foam”. Some restrict to rotationally invariant
LV, while others consider also rotational symmetry breaking. Both true LV
as well as “deformed” Lorentz symmetry (in the context of so-called “doubly
special relativity”[11]) have been pursued. Another difference in approaches
is whether one allows for distinct LV parameters for different particle types,
or proposes a more universal form of LV.

The rest of this article will focus on just one of these approaches, namely
LV describable by standard EFT, assuming rotational invariance, and allowing
distinct LV parameters for different particles. In exploring the possible phe-
nomenology of new physics, it seems useful to retain enough standard physics
so that clear predictions can be made, and so that the possibilities are narrow
enough to be meaningfully constrained.

This approach is not universally favored. For example a sharp critique ap-
pears in [39]. Therefore we think it is important to spell out the motivation
for the choices we have made. First, while of course it may be that EFT is not
adequate for describing the leading quantum gravity phenomenology effects,
it has proven itself very effective and flexible in the past. It produces local
energy and momentum conservation laws, and seems to require for its valid-
ity just locality and local spacetime translation invariance above some length
scale. It describes the standard model and general relativity (which are pre-
sumably not fundamental theories), a myriad of condensed matter systems
at appropriate length and energy scales, and even string theory (as perhaps
most impressively verified in the calculations of black hole entropy and Hawk-
ing radiation rates). It is true that, e.g., non-commutative geometry (NCG)
seems to lead to EFT with problematic IR/UV mixing, however this more
likely indicates a physically unacceptable feature of such NCG rather than a
physical limitation of EFT.

The assumption of rotational invariance is motivated by the idea that LV
may arise in QG from the presence of a short distance cutoff. This suggests a
breaking of boost invariance, with a preferred rest frame, but not necessarily
rotational invariance. Since a constraint on pure boost violation is, barring a
conspiracy, also a constraint on boost plus rotation violation, it is sensible to
simplify with the assumption of rotation invariance at this stage. The preferred
frame is assumed to coincide with the rest frame of the CMB.

Finally why do we choose to complicate matters by allowing for differ-
ent LV parameters for different particles? First, EFT for first order Planck
suppressed LV (see Sect. 3.2) requires this for different polarizations or spin
states, so it is unavoidable in that sense. Second, we see no reason a priori
to expect these parameters to coincide. The term “equivalence principle” has
been used to motivate the equality of the parameters. However, in the presence
of LV dispersion relations, free particles with different masses travel on differ-
ent trajectories even if they have the same LV parameters [5, 40]. Moreover,
different particles would presumably interact differently with the spacetime
microstructure since they interact differently with themselves and with each
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other. An example of this occurs in the braneworld model discussed in [41],
and an extreme version occurs in the proposal of [42] in which only certain
particles feel the spacetime foam effects. (Note however that in this proposal
the LV parameters fluctuate even for a given kind of particle, so EFT would
not be a valid description.)

3.1 Deformed Dispersion Relations

A simple approach to a phenomenological description of LV is via deformed
dispersion relations. If rotation invariance and integer powers of momentum
are assumed in the expansion of E2(p), the dispersion relation for a given
particle type can be written as

E2 = p2 +m2 +∆(p), (3)

where p is hereafter the magnitude of the three-momentum, and

∆(p) = η̃1p1 + η̃2p2 + η̃3p3 + η̃4p4 + · · · (4)

Since they are not Lorentz invariant, it is necessary to specify the frame in
which these relations are given, namely the CMB frame.

Let us introduce two mass scales, M = 1019 GeV ≈MPlanck, the putative
scale of quantum gravity, and µ, a particle physics mass scale. To keep mass
dimensions explicit we factor out possibly appropriate powers of these scales,
defining the dimensionful η̃’s in terms of corresponding dimensionless para-
meters. It might seem natural that the pn term with n ≥ 3 be suppressed by
1/Mn−2, and indeed this has been assumed in most work. But following this
pattern one would expect the n = 2 term to be unsuppressed and the n = 1
term to be even more important. Since any LV at low energies must be small,
such a pattern is untenable. Thus either there is a symmetry or some other
mechanism protecting the lower dimension operators from large LV, or the
suppression of the higher dimension operators is greater than 1/Mn−2. This
is an important issue to which we return in Subsect. 3.3.

For the moment we simply follow the observational lead and insert at least
one inverse power of M in each term, viz.

η̃1 = η1
µ2

M
, η̃2 = η2

µ

M
, η̃3 = η3

1
M
, η̃4 = η4

1
M2

. (5)

In characterizing the strength of a constraint we refer to the ηn without the
tilde, so we are comparing to what might be expected from Planck-suppressed
LV. We allow the LV parameters ηi to depend on the particle type, and indeed
it turns out that they must sometimes be different but related in certain ways
for photon polarization states, and for particle and antiparticle states, if the
framework of effective field theory is adopted. In an even more general setting,
Lehnert [43] studied theoretical constraints on this type of LV and deduced
the necessity of some of these parameter relations.
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The deformed dispersion relations are introduced for elementary particles
only; those for macroscopic objects are then inferred by addition. For example,
if N particles with momentum p and mass m are combined, the total energy,
momentum and mass are Etot = NE(p), ptot = Np, and mtot = Nm, so that
E2

tot = p2tot+m
2
tot+N

2∆(p). Although the Lorentz violating term can be large
in some fixed units, its ratio with the mass and momentum squared terms in
the dispersion relation is the same as for the individual particles. Hence, there
is no observational conflict with standard dispersion relations for macroscopic
objects.

This general framework allows for superluminal propagation, and spacelike
4-momentum relative to a fixed background metric. It has been argued [44]
that this leads to problems with causality and stability. In the setting of a LV
theory with a single preferred frame, however, we do not share this opinion. As
long as the physics is guaranteed to be causal and the states all have positive
energy in the preferred frame, we cannot see any room for such problems to
arise.

3.2 Effective Field Theory and LV

The standard model extension (SME) of Colladay and Kostelecký [22] consists
of the standard model of particle physics plus all Lorentz violating renormal-
izable operators (i.e. of mass dimension ≤4) that can be written without
changing the field content or violating the gauge symmetry. For illustration,
the leading order terms in the QED sector are the dimension three terms

− baψ̄γ5γaψ − 1
2
Habψ̄σ

abψ (6)

and the dimension four terms

− 1
4
kabcdFabFcd +

i

2
ψ̄(cab + dabγ5)γa

↔
D

bψ , (7)

where the dimension one coefficients ba, Hab and dimensionless kabcd, cab,
and dab are constant tensors characterizing the LV. If we assume rotational
invariance then these must all be constructed from a given unit timelike vector
ua and the Minkowski metric ηab, hence ba ∝ ua, Hab = 0, kabcd ∝ u[aηb][cud],
cab ∝ uaub, and dab ∝ uaub. Such LV is thus characterized by just four
numbers.

The study of Lorentz violating EFT in the higher mass dimension sector
was initiated by Myers and Pospelov [37]. They classified all LV dimension five
operators that can be added to the QED Lagrangian and are quadratic in the
same fields, rotation invariant, gauge invariant, not reducible to a combination
of lower and/or higher dimension operators using the field equations, and
contribute p3 terms to the dispersion relation. Just three operators arise:

− ξ

2M
umFma(u · ∂)(unF̃

na) +
1
M
umψ̄γm(ζ1 + ζ2γ5)(u · ∂)2ψ (8)
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where F̃ denotes the dual of F , and ξ, ζ1,2 are dimensionless parameters. The
sign of the ξ term in (8) is opposite to that in [37], and is chosen so that
positive helicity photons have +ξ for a dispersion coefficient (see below). All
of these terms violate CPT symmetry as well as Lorentz invariance. Thus if
CPT were preserved, these LV operators would be forbidden.

In the limit of high energy E � m, the photon and electron dispersion
relations following from QED with the above terms are [37]

ω2
± = k2 ± ξ

M
k3 (9)

E2
± = p2 +m2 +

2(ζ1 ± ζ2)
M

p3 . (10)

The photon subscripts ± refer to helicity, i.e. right and left circular po-
larization, which it turns out necessarily have opposite LV parameters. The
electron subscripts ± refer to the helicity, which can be shown to be a good
quantum number in the presence of these LV terms [33]. Moreover, if we write
η± = 2(ζ1 ± ζ2) for the LV parameters of the two electron helicities, those for
positrons are given [33] by

ηpositron
± = −ηelectron∓ . (11)

If η1 = 0, then the two helicities have opposite LV parameters, η+ = −η−, so
electron and positron have the same LV parameters. If instead η2 = 0, then
the η+ = η−, so electron and positron have opposite LV parameters.

3.3 Naturalness of Small LV at Low Energy?

As discussed above in Subsect. 3.1, if LV operators of dimension n > 4 are
suppressed, as we have imagined, by 1/Mn−2, LV would feed down to the lower
dimension operators and be strong at low energies [25, 37, 46, 47], unless there
is a symmetry or some other mechanism that protects the lower dimension
operators from strong LV. What symmetry (other than Lorentz invariance, of
course!) could that possibly be?

In the Euclidean context, a discrete subgroup of the Euclidean rotation
group suffices to protect the operators of dimension four and less from viola-
tion of rotation symmetry. For example [48], consider the “kinetic” term in
the EFT for a scalar field with hypercubic symmetry, Mµν∂µφ∂νφ. The only
tensorMµν with hypercubic symmetry is proportional to the Kronecker delta
δµν , so full rotational invariance is an “accidental” symmetry of the kinetic
operator.

If one tries to mimic this construction on a Minkowski lattice admitting a
discrete subgroup of the Lorentz group, one faces the problem that each point
has an infinite number of neighbors related by the Lorentz boosts. For the
action to share the discrete symmetry each point would have to appear in in-
finitely many terms of the discrete action, presumably rendering the equations
of motion meaningless.



110 T. Jacobson et al.

Another symmetry that could do the trick is three dimensional rotational
symmetry together with a symmetry between different particle types. For
example, rotational symmetry would imply that the kinetic term for a scalar
field takes the form (∂tφ)2 − c2(∇φ)2, for some constant c. Then, for multiple
scalar fields, a symmetry relating the fields would imply that the constant c
is the same for all, hence the kinetic term would be Lorentz invariant with c
playing the role of the speed of light. Unfortunately this mechanism does not
work in nature, since there is no symmetry relating all the physical fields.

Perhaps under some conditions a partial symmetry could be adequate,
e.g. grand unified gauge and/or super symmetry. In fact, a recent analysis of
Nibbelink and Pospelov [49] presents evidence that supersymmetry (SUSY)
together with gauge symmetry might indeed play this role. SUSY here refers to
the symmetry algebra that is a kind of square root of the spacetime translation
group. The nature of this square root depends upon the Minkowski metric,
so is tied to the Lorentz group, but it does not require Lorentz symmetry.
It is shown in [49], using the superfield formalism, that the SUSY preserving
LV operators that can be added to the SUSY Standard Model first appear at
dimension five. Moreover, these operators do not contribute O(p3) terms to
the particle dispersion relations. Of course SUSY is broken in the real world,
but the suppression in the SUSY theory may mean that the low dimension LV
terms allowed in the presence of soft SUSY breaking are suppressed enough
to be compatible with observation. On the other hand, it might also mean
that they are so suppressed as to lie beyond the scope of observation.

At this stage we assume the existence of some realization of the Lorentz
symmetry breaking scheme upon which constraints are being imposed. If none
exists, then our parametrization (5) is misleading, since there should be more
powers of 1/M suppressing the higher dimension terms. In that case, current
observational limits on those terms do not significantly constrain the funda-
mental theory.

4 Reaction Thresholds and LV

Lorentz violation can have significant effects on energy thresholds for parti-
cle reactions. Such effects could be signatures of LV, and can be used to put
constraints on LV. In the presence of LV, standard properties of LI threshold
configurations (e.g. angles and momentum distributions) may not be pre-
served. Hence a careful study of properties of LV threshold configurations is
needed before signatures and constraints can be considered. In this section we
review some basic results concerning LV thresholds.

Threshold configurations and new phenomena in the presence of LV disper-
sion relations were systematically investigated in [25, 50] (see also references
therein). We give here a brief summary of the results. We shall consider reac-
tions with two initial and two final particles (results for reactions with only one
incoming or outgoing particle can be obtained as special cases). Following our
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previous choice of EFT we allow each particle to have an independent disper-
sion relation of the form (3) with E(p) a monotonically increasing non-negative
function of the magnitude p of the 3-momentum p. While the assumption of
monotonicity could perhaps be violated at the Planck scale, it is satisfied for
any reasonable low energy expansion of a LV dispersion relation. EFT further
implies that energy and momentum are additive for multiple particles, and
conserved.

Consider a four-particle interaction where a target particle of 3-momentum
p2 is hit by a particle of 3-momentum p1, with an angle α between the two
momenta, producing two particles of momenta p3 and p4. We call β the angle
between p3 and the total incoming 3-momentum pin = p1 + p2. We define
the notion of a threshold relative to a fixed value of the magnitude of the
target momentum p2. A lower or upper threshold corresponds to a value of
p1 (or equivalently the energy E1) above which the reaction starts or stops
being allowed by energy and momentum conservation.

We now introduce a graphical interpretation of the energy-momentum
conservation equation that allows the properties of thresholds to be easily
understood. For given values of (p1, p2, α, β, p3), momentum conservation de-
termines p4. Since p3 and p4 determine the final energies E3 and E4, we can
thus define the final energy function Eα,β,p3

f (p1). (Since p2 is fixed we drop it
from the labelling.) Energy conservation requires that Ef be equal to Ei(p1),
the initial energy (again, we do not indicate the dependence on the fixed
momentum p2).

Now consider the region R in the (E, p1) plane covered by plotting
Eα,β,p3

f (p1) for all possible configurations (α, β, p3). An example is shown in
Fig. 1. The region R is bounded below by E = 0 since the particle energies
are assumed non-negative, hence it has some bounding curve EB(p1). Simi-
larly one can plot Ei(p1). The reaction is allowed (i.e. there is a solution to
the energy and momentum conservation equations) when this latter curve lies
inside the region R. A lower or upper threshold occurs when Ei(p1) enters or
leaves R.

This graphical representation demonstrates that in any threshold config-
uration (lower or upper) occurring at some p1, the parameters (α, β, p3) are
such that the final energy function Eα,β,p3

f (p1) is minimized. That is, the
configuration always yields the minimum final particle energy configuration
conserving momentum at fixed p1 and p2. From this fact, it is easy to deduce
two general properties of these configurations:

1. All thresholds for processes with two outgoing particles occur at parallel
final momenta (β = 0).

2. For a two-particle initial state the momenta are antiparallel at threshold
(α = π).

These properties are in agreement with the well known case of Lorentz in-
variant kinematics. Nevertheless, LV thresholds can exhibit new features not
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E

p1

E= p1

R

Ei

Fig. 1. R is the region covered by all final energy curves Eα,β,p3
f (p1) for some fixed

p2, with p4 determined by momentum conservation. The curve Ei(p1) is the initial
energy for the same fixed p2. Where the latter curve lies inside R there is a solution
to the energy and momentum conservation equations

present in the Lorentz invariant theory, in particular upper thresholds and
asymmetric pair creation.

Figure 1 clearly shows that LV allows for a reaction to not only to start
at some lower threshold but also to end at some upper threshold where the
curve Ei exits the region R. It can even happen that Ei enters and exits R
more than once, in which case there are what one might call “local” lower and
and upper thresholds.

Another interesting novelty is the possibility to have a (lower or upper)
threshold for pair creation with an unequal partition of the initial momentum
pin into the two outgoing particles (i.e. p3 �= p4 �= pin/2). Equal partition of
momentum is a familiar result of Lorentz invariant physics, which follows from
the fact that the final particles are all at rest in the zero-momentum frame at
threshold. This has often been (erroneously) presumed to hold as well in the
presence of LV dispersion relations.

A reason for the occurrence of asymmetric LV thresholds can be seen
graphically, as shown in Fig. 2. Suppose the dispersion relation for a massive
outgoing particle Eout(p) has negative curvature at p = pin/2, as might be
the case for negative LV coefficients. Then a small momentum-conserving dis-
placement from a symmetric configuration can lead to a net decrease in the
final state energy. According to the result established above, the symmetric
configuration cannot be the threshold one in such a case. A lower p1 could
satisfy both energy and momentum conservation with an asymmetric final
configuration. A sufficient condition for the pair-creation threshold configura-
tion to be asymmetric is that the final particle dispersion relation has negative
curvature at p = pin/2. This condition is not necessary however, since it could
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Fig. 2. Asymmetric pair production. The negative curvature of the outgoing par-
ticle dispersion relation allows the energy of the outgoing pair to be reduced by
distributing the initial momentum pin un-equally between the two particles

happen that the energy is locally but not globally minimized by the symmetric
configuration.

5 Constraints

Observable effects of LV arise, among other things, from (1) sidereal variation
of LV couplings due to motion of the laboratory relative to the preferred
frame, (2) dispersion and birefringence of signals over long travel times, (3)
anomalous reaction thresholds. We will often express the constraints in terms
of the dimensionless parameters ηn introduced in (5). An order unity value
might be considered to be expected in Planck suppressed LV.

The possibility of interesting constraints in spite of Planck suppression
arises in different ways for the different types of observations. In the laboratory
experiments looking for sidereal variations, the enormous number of atoms
allow variations of a resonance frequency to be measured extremely accurately.
In the case of dispersion or birefringence, the enormous propagation distances
would allow a tiny effect to accumulate. In the anomalous threshold case, the
creation of a particle with mass m would be strongly affected by a LV term
when the momentum becomes large enough for this term to be comparable
to the mass term in the dispersion relation.
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We briefly mention first constraints on the renormalizable Standard Model
Extension, then focus on LV suppressed by one or two powers of the ratio
E/M .

5.1 Constraints on Renormalizable Terms

For the n = 2 term in (4,5), the absence of a strong threshold effect yields a
constraint η2 � (m/p)2(M/µ). If we consider protons and put µ = m = mp ∼
1 GeV, this gives an order unity constraint when p ∼ √

mM ∼ 1019 eV. Thus
the GZK threshold, if confirmed, can give an order unity constraint, but multi-
TeV astrophysics yields much weaker constraints. The strongest laboratory
constraints on dimension three and four operators come from clock comparison
experiments using noble gas masers [51]. The constraints limit a combination
of the coefficients for dimension three and four operators for the neutron to be
below 10−31 GeV (the dimension four coefficients are weighted by the neutron
mass, yielding a constraint in units of energy). For more on such constraints
see e.g. [23, 52]. Astrophysical limits on photon vacuum birefringence give a
bound on the coefficients of dimension four operators of 10−32 [53].

5.2 Summary of Constraints on LV in QED at O(E/M)

Since we do not assume universal LV coefficients, different constraints cannot
be combined unless they involve just the same particle types. To achieve the
strongest combined constraints it is thus preferable to focus on processes in-
volving a small number of particle types. It also helps if the particles are very
common and easy to observe. This selects electron-photon physics, i.e. QED,
as a useful arena.

The current constraints on the three LV parameters at order E/M – one
in the photon dispersion relation and two in the electron dispersion relation –
will now be summarized. These are equivalent to the parameters in the di-
mension five operators (8) written down by Myers and Pospelov.

For n = 3, a strong effect on energy thresholds involving only electrons
and photons can occur when the LV term ηp3/M in the electron or photon
dispersion relation is comparable to or greater than the electron mass term
m2. This happens when

p � 14TeV η−1/3
3 . (12)

We can thus obtain order unity and even much stronger constraints from high
energy astrophysics, where such energies are reached and exceeded.

In Fig. 3 (from [33]) constraints on the photon (ξ) and electron (η) LV
parameters are plotted on a logarithmic scale to allow the vastly differing
strengths to be simultaneously displayed. For negative parameters, the nega-
tive of the logarithm of the absolute value is plotted, and a region of width
10−18 is excised around each axis. The synchrotron and Čerenkov constraints
must both be satisfied by at least one of the four quantities ±η±. The IC
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Fig. 3. Constraints on LV in QED at O(E/M) (figure from [33])

and synchrotron Čerenkov lines are truncated where they cross. Prior photon
decay and absorption constraints are shown in dashed lines since they do not
account for the EFT relations between the LV parameters.

We now briefly review the physics and observations behind these and other
constraints.

Electron Helicity Dependence and “Helicity Decay”

The constraint |η+ − η−| < 4 on the difference between the positive and neg-
ative electron helicity parameters was deduced by Myers and Pospelov [37]
using a previous spin-polarized torsion pendulum experiment [54] that looked
for diurnal changes in resonance frequency. They also determined a numeri-
cally stronger constraint using nuclear spins, however this involves four differ-
ent LV parameters, one for the photon, one for the up-down quark doublet,
and one each for the right handed up and down quark singlets. It also requires
a model of nuclear structure.

It is possible that an interesting constraint could be obtained from the
process of “helicity decay”[33]. If η+ and η− are unequal, say η+ > η−, then
a positive helicity electron can decay into a negative helicity electron and a
photon, even when the LV parameters do not permit the vacuum Čerenkov
effect. In this process, the large R or small (O(m/E)) L component of a pos-
itive helicity electron is coupled to the small R or large L component of a
negative helicity electron respectively. Such “helicity decay” has no thresh-
old energy, so whether this process can be used to set a constraint is solely
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a matter of the decay rate. It can be shown (assuming |ξ| � 10−3) that
for electrons of energy less than the transition energy (m2M/(η+ − η−))1/3,
the lifetime of an electron susceptible to helicity decay is greater than 4πM/
(η+ − η−)e2m2. At the limit of the best current bound |η+ − η−| < 4, the
transition energy is approximately 10 TeV and the lifetime for electrons be-
low this energy is greater than 104 seconds. This is long enough to preclude
any terrestrial experiments from seeing the effect. The lifetime above the tran-
sition energy is instead bounded below by E/e2m2, which is 10−11 seconds for
energies just above 10 TeV. The lifetime might therefore be short enough to
provide new constraints. Such a constraint might come from the Crab Nebula,
as explained below.

Vacuum Birefringence

The birefringence constraint arises from the fact that the LV parameters for
left and right circular polarized photons are opposite (10). The phase velocity
thus depends on both the wavevector and the helicity. Linear polarization is
therefore rotated through an energy dependent angle as a signal propagates,
which depolarizes any initially linearly polarized signal. Hence the observa-
tion of linearly polarized radiation coming from far away can constrain the
magnitude of the LV parameter.

In more detail, with the dispersion relation (10) the direction of linear
polarization is rotated through the angle

θ(t) = [ω+(k) − ω−(k)] t/2 = ξk2t/2M (13)

for a plane wave with wave-vector k over a propagation time t. The difference
in rotation angles for wave-vectors k1 and k2 is thus

∆θ = ξ(k2
2 − k2

1)d/2M , (14)

where we have replaced the time t by the distance d from the source to the
detector (divided by the speed of light). Note that the effect is quadratic in
the photon energy, and proportional to the distance travelled.

This effect has been used to constrain LV in the dimension three (Chern-
Simons) [55], four [53] and five [30, 33, 34] terms. The constraint shown in the
figure derives from the recent report [31] of a high degree of polarization of
MeV photons from GRB021206. The data analysis has been questioned [32],
so we shall have to wait and see if it is confirmed. The next best constraint
on the dimension five term was deduced by Gleiser and Kozameh [30] using
UV light from distant galaxies. While ten orders of magnitude weaker, it is
still very strong, |ξ| � 2 × 10−4.

Photon Time of Flight

Photon time of flight constraints [57] limit differences in the arrival time at
Earth for photons originating in a distant event [26, 56]. Time of flight can
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vary with energy since the LV term in the group velocity is ξk/M . The arrival
time difference for wave-vectors k1 and k2 is thus

∆t = ξ(k2 − k1)d/M , (15)

which is proportional to the energy difference and the distance travelled. Using
the EFT result (10), the velocity difference of the two polarizations at a given
energy is 2|ξ|k/M , at least twice as large as the one arising from energy
differences. However, the time of flight constraint remains many orders of
magnitude weaker than the birefringence one from polarization rotation. In
Fig. 3 we use the EFT improvement of the constraint of Biller et al. [57] (this
is the best constraint to date for which a reliable distance is known), which
yields |ξ| < 63.

Vacuum Čerenkov Effect, Inverse Compton Electrons

In the presence of LV the process of vacuum Čerenkov radiation e → eγ can
occur. For example, if the photon dispersion is unmodified and the electron
parameter η (for one helicity) is positive, then the electron group velocity
vg = 1 − (m2/2p2) + (ηp/M) + · · · exceeds the speed of light when

pth = (m2M/2η)1/3 � 11TeV η−1/3 . (16)

This turns out to be the threshold energy for the vacuum Čerenkov process
with emission of a zero energy photon, which we call the soft Čerenkov thresh-
old. There is also the possibility of a hard Čerenkov threshold [5, 58]. For ex-
ample, if the electron dispersion is unmodified and the photon parameter ξ is
negative then at sufficiently high electron energy the emission of an energetic
positive helicity photon is possible. This hard Čerenkov threshold occurs at
pth = (−4m2M/ξ)1/3, and the emitted photon carries away half the incoming
electron momentum. It turns out that the threshold is soft when both η > 0
and ξ ≥ −3η, while it is hard when both ξ < −3η and ξ < η. The hard thresh-
old in the general case is given by pth = (−4m2M(ξ+η)/(ξ−η)2)1/3, and the
photon carries away a fraction (ξ − η)/2(ξ + η) of the incoming momentum.
In the general case at threshold, neither the incoming nor outgoing electron
group velocity is equal to the photon group velocity, so the hard Čerenkov
effect cannot simply be interpreted as being due to faster than light motion
of a charged particle.

The inverse Compton (IC) Čerenkov constraint uses the electrons of energy
up to 50 TeV inferred via the observation of 50 TeV gamma rays from the Crab
nebula which are explained by IC scattering. (The implications of a possible
high energy population of positrons is discussed below.) Since the vacuum
Čerenkov rate is orders of magnitude higher than the IC scattering rate, that
process must not occur for these electrons [5, 25]. (For a study of the vacuum
Čerenkov process in the Maxwell-Chern-Simons limit of the standard model
extension see [59].) The absence of the soft Čerenkov threshold up to 50 TeV
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produces the vertical IC Čerenkov line in Fig. 3. One can see from (16) that
this yields a constraint on η of order (11 TeV/50 TeV)3 ∼ 10−2. It could be
that only one electron helicity produces the IC photons and the other loses
energy by vacuum Čerenkov radiation. Hence we can infer only that at least
one of η+ and η− satisfies the bound.

We do not indicate the hard IC Čerenkov threshold constraint in Fig. 3
since it is superseded by the hard synchrotron Čerenkov constraint discussed
below.

Crab Synchrotron Emission

A constraint complementary to the Čerenkov one was derived in [38] by mak-
ing use of the very high energy electrons that produce the highest frequency
synchrotron radiation in the Crab nebula. For negative values of η the elec-
tron has a maximal group velocity less than the speed of light, hence there
is a maximal synchrotron frequency that can be produced regardless of the
electron energy [38]. In the Lorentz invariant case these electrons must have
an energy of at least 1500 TeV, which suggests that we should be able to
obtain a constraint many orders of magnitude stronger than the IC Čerenkov
one. We now explain how this indeed comes about.

Cycling electrons in a magnetic field B emit synchrotron radiation with a
spectrum that sharply cuts off at a frequency ωc given by the formula

ωc =
3
2
eB
γ3(E)
E

, (17)

where γ(E) = (1−v2(E)/c2)−1/2. Here v(E) is the electron group velocity, and
c is the usual low energy speed of light. (As shown in [38] the photon energy is
low enough to neglect any possible LV correction as long as |ξ| � 1011(−η)4/3.)
The formula (17) is based on the electron trajectory for a given energy in
a given magnetic field, the radiation produced by a given current, and the
relativistic relation between energy and velocity. As explained in [38], and also
in some more detail in [60] (which was written in response to the criticism
of [39]), only the last of these ingredients is significantly affected by LV in the
EFT framework we are considering. (See also [61] for another demonstration
that the electron trajectory is essentially unchanged.) Hence (17) holds in that
framework.

In standard relativistic physics, E = γm, so the energy dependence in (17)
is entirely through the factor γ2, which grows without bound as the energy
grows. In the LV case, the maximum synchrotron frequency ωmax

c is obtained
by maximizing øc (17) with respect to the electron energy, which amounts to
maximizing γ3(E)/E. Using the difference of group velocities

c− v(E) � m2

2E2
− η E

M
, (18)

we find that this maximization yields
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ωmax
c = 0.34

eB

m
(−ηm/M)−2/3 . (19)

This maximum frequency is attained at the energy Emax = (−2m2M/5η)1/3 =
10 (−η)−1/3 TeV. This is higher than the energy that produces the same cutoff
frequency in the Lorentz invariant case, but only by a factor of order unity.

The rapid decay of synchrotron emission at frequencies larger than ωc

implies that most of the flux at a given frequency in a synchrotron spectrum
is due to electrons for which ωc is above that frequency. Thus ωmax

c must
be greater than the maximum observed synchrotron emission frequency øobs.
This yields the constraint

η > −M
m

(
0.34 eB
møobs

)3/2

. (20)

The Crab synchrotron emission has been observed to extend at least up to
energies of about 100 MeV [62], just before the inverse Compton hump begins
to contribute to the spectrum. The magnetic field in the emission region has
been estimated by several methods which agree on a value between 0.15–
0.6 mG (see e.g. [63] and references therein.) Two of these methods, radio
synchrotron emission and equipartition of energy, are insensitive to Planck
suppressed Lorentz violation, hence we are justified in adopting a value of
this order for the purpose of constraining Lorentz violation. We use the largest
value 0.6 mG for B, since it yields the weakest constraint.

Our prior work assumed the high energy Crab radiation was produced
purely by electrons, not positrons. We consider here first this case. Then
we infer that at least one of the two parameters η± must be greater than
−7× 10−8. We cannot constrain both η parameters in this way since it could
be that all the Crab synchrotron radiation is produced by electrons of one
helicity.

Combined Synchrotron and IC Čerenkov Constraint

The η satisfying the synchrotron constraint must be the same η as satisfies the
IC Čerenkov constraint discussed above. If the synchrotron η did not satisfy
the IC Čerenkov constraint, the energy of these synchrotron electrons would
necessarily be under 50 TeV, rather than over the Lorentz invariant value of
1500 TeV. The Crab spectrum is well accounted for with a single population
of electrons responsible for both the synchrotron radiation and the IC γ-rays.
If there were enough extra electrons to produce the observed synchrotron flux
with thirty times less energy per electron, then those of the other helicity
would produce too many IC γ-rays [33], unless they were far fewer in number
in just the right proportion to agree with the self-consistent single population
model. While possible, such a conspiracy seems highly unlikely. It is important
that the same η, i.e. either η+ or η−, satisfies both the synchrotron and the IC
Čerenkov constraints. Otherwise, both constraints could have been satisfied
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by having one of these two parameters arbitrarily large and negative, and the
other arbitrarily large and positive.5

Possible Helicity Dependence Constraint

As alluded to above, a constraint on helicity dependence of the electron para-
meter η might be possible using the Crab Nebula. Suppose that η− is below
the synchrotron constraint (i.e. η− < −7×10−8), so that η+ must satisfy both
the synchrotron and Čerenkov constraints as explained above. Then positive
helicity electrons must have an energy of at least 50 TeV to produce the
observed synchrotron radiation. These must not decay to negative helicity
electrons (since those would be unable to produce the synchrotron emission).
This would require that the transition energy (discussed in the helicity depen-
dence section above) be greater than 50 TeV if the decay rate is fast enough.
This would yield the constraint η+ − η− < 10−2.

Possible Role of Positrons

If the population of high energy charges includes positrons as well as electrons,
as in some models [64], then the above constraint analysis must be modified.
The reasoning discussed so far implies only that at least one of the four para-
meters ±η± satisfies both the synchrotron and IC Čerenkov constraints, since
the emitting charge could be either an electron or a positron. In effect, this
reduces to the statement that one of |η±| satisfies the IC Cerenkov constraint.
We are currently investigating what constraints can be inferred if the amount
of radiation produced by each of the four populations of charges is accounted
for more quantitatively.

Vacuum Čerenkov Effect, Synchrotron Electrons

The existence of the synchrotron producing electrons can be exploited to ex-
tend the vacuum Čerenkov constraint. For a given η satisfying the synchrotron
bound, some definite electron energy Esynch(η) must be present to produce
the observed synchrotron radiation. (This is higher for negative η and lower
for positive η than the Lorentz invariant value [38].) Values of |ξ| for which the
vacuum Čerenkov threshold is lower than Esynch(η) for either photon helicity
can therefore be excluded [33]. This is always a hard photon threshold, since
the soft photon threshold occurs when the electron group velocity reaches the
low energy speed of light, whereas the velocity required to produce any finite
synchrotron frequency is smaller than this.
5 We thank G. Amelino-Camelia for focusing our attention on this point
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Photon Decay

In the presence of LV the process of photon decay γ → e+e− can occur. For
example, if the electron dispersion is unmodified and the photon parameter
ξ is positive, the positive helicity photon decays above the threshold energy
kth = (4m2M/ξ)1/3. If instead the photon dispersion is unmodified and if
electron and positron have the same dispersion with η < 0, then the threshold
occurs at kth = (−8m2M/η)1/3. The threshold for general ξ and η is found in
[5, 58].

Contrary to relativistic intuition, it turns out that when η < ξ < 0 the
electron and positron are not created with the same momentum. The reason
(cf. Sect. 4) is the electron and positron energy functions E(p) have negative
curvature at the threshold value of p. If the two momenta were equal, the
energy of the final state at fixed momentum could be lowered by making the
momentum of one particle smaller and one larger by an equal amount.

Previous work on observational constraints using photon decay and pho-
ton absorption (to be discussed below) were carried out before it was known
how the dispersion depends on helicity and particle vs. anti-particle. Since
these constraints are in any case not competitive now with others, we have
not attempted to fully account for these relations. Here we just make a few
remarks.

The strongest limit on photon decay came from the highest energy photons
known to propagate, which at the moment are the 50 TeV photons observed
from the Crab nebula [5, 58]. These photons must not decay before reaching
the earth, so we can rule out those LV parameters that lead to a threshold
below 50 TeV, provided the decay rate is fast enough.

Since we do not know the polarization of the observed photons however,
we can only exclude regions where both photon polarizations decay. Recall
that according to (10) positive and negative helicity photons have opposite
parameters ±ξ. A positive helicity photon carries a spin angular momentum
of one along the direction of motion. At threshold, where all momenta are
aligned, the electron and positron must therefore both have positive helicity.
Likewise a left-handed photon decays at threshold into a negative helicity
pair. Consider first the case η− = −η+ so that, according to (11), the elec-
tron and positron have the same dispersion parameter. Then the outgoing
pair both have parameter η+ for a positive helicity incoming photon and −η+
for a negative helicity one. We can then exclude those parameters for which
both (ξ, η+) and (−ξ,−η+) lead to photon decay thresholds below 50 TeV.
The allowed region is the intersection of that from the old photon decay con-
straint [5, 58] with its reflection about the ξ and η axes. It is a pair of wedges
in the upper-right and bottom left quadrants. Numerical work shows that this
wedge pattern is maintained for different choices of η− relative to η+, however
the exact orientation and shape of the wedges varies. A complete analysis of
constraints would also require examination of above threshold processes when
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the outgoing particles have orbital angular momentum and hence helicities
that are not determined solely by the incoming photon.

Photon Absorption

A process related to photon decay is photon absorption, γγ → e+e−. Unlike
photon decay, this is allowed in Lorentz invariant QED. If one of the photons
has energy ω0, the threshold for the reaction occurs in a head-on collision with
the second photon having the momentum (equivalently energy) kLI = m2/ω0.
For kLI = 10 TeV (which will be relevant for the observational constraints)
the soft photon threshold ω0 is approximately 25 meV, corresponding to a
wavelength of 50 microns.

In the presence of Lorentz violating dispersion relations the threshold for
this process is in general altered, and the process can even be forbidden. More-
over, as noticed by Kluźniak [65], in some cases there is an upper threshold
beyond which the process does not occur.6 The lower and upper thresholds
for photon annihilation as a function of the two parameters ξ and η were
obtained in [5], before the helicity dependence required by EFT was appre-
ciated. As the soft photon energy is low enough that its LV can be ignored,
this corresponds to the case where electrons and positrons have the same LV
terms. The analysis is rather complicated. In particular it is necessary to sort
out whether the thresholds are lower or upper ones, and whether they occur
with the same or different pair momenta.

The photon absorption constraint, neglecting helicity dependent effects,
came from the fact that LV can shift the standard QED threshold for an-
nihilation of multi-TeV γ-rays from nearby blazars, such as Mkn 501, with
the ambient infrared extragalactic photons [5, 58, 60, 65, 66, 67, 68]. LV de-
presses the rate of absorption of one photon helicity, and increases it for the
other. Although the polarization of the γ-rays is not measured, the possibility
that one of the polarizations is essentially unabsorbed appears to be ruled out
by the observations which show the predicted attenuation [68]. The electron
and positron spin angular momenta add to at most one. At threshold, where
the collision is head-on, the photons must therefore have opposite helicity,
and hence the electron and positron have opposite helicity. According to (11),
they therefore have opposite LV parameters. The threshold analysis has not
been redone to account for this.

Vacuum Photon Splitting

Another forbidden QED process that is allowed in the presence of LV is vac-
uum photon splitting into N photons, γ → Nγ. Unlike the other processes
considered here, this would be a loop effect. The lowest order Feynman dia-
gram contributing would be a fermion loop with various photon lines attached.
6 Our results agree with those of [65] only in certain limiting cases.
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The process has no threshold, so whether or not it can be used to set con-
straints depends on the rate.

Aspects of vacuum photon splitting have been examined in [5, 69]. An es-
timate of the rate, independent of the particular form of the Lorentz violating
theory, was given in [5]. It was argued that a lower bound on the lifetime is
δ−4E−1, where δ is a Lorentz violating factor. For a photon of energy 50 TeV,
this is 10−29δ−4 seconds. Such 50 TeV photons arrive from the Crab nebula,
about 1013 seconds away, so the best constraint (i.e. if there is is no further
small parameter such as αN or 1/16π2 in the decay rate) we could possibly
get on δ from photon splitting is δ � 10−10.

For a pn LV term with n = 2 in the dispersion relation, this is not compet-
itive with the other constraints already obtained. For higher n, each contribu-
tion arising from an operator of dimension greater than four will be suppressed
by at least one inverse power of the scale M . For example, contributions from
n = 3 would yield δ ∼ ξE/M . In this case the strongest conceivable constraint
on ξ would be of order ξ � 104, and even this is not competitive with the
other constraints.

5.3 Constraints at O(E/M) from UHE Cosmic Rays

If ultra-high energy cosmic rays (UHECR) are (as commonly assumed) pro-
tons, then we can derive strong constraints on n = 3 type dispersion by a) the
absence of a vacuum Čerenkov effect at GZK energies and b) the position of
the GZK cutoff. For a soft emitted photon with a long wavelength, the par-
tonic structure of a UHECR proton is presumably irrelevant. In this case we
can treat the proton as a point particle as in the QED analysis. With a GZK
proton of energy 5 × 1019 eV the constraint from the absence of a vacuum
Čerenkov effect is η < O(10−14). For a hard emitted photon, the partonic
nature of the proton is important and the relevant mass scale will involve
the quark mass. The exact calculation considering the partonic structure for
n = 3 has not been performed, however the threshold region will be similar
to that in [5]. The allowed region in the η − ξ plane will be bounded on the
right by the ξ axis (within a few orders of magnitude of 10−14) and below by
the line ξ = η [5]. These constraints apply to only one helicity of proton and
photon, since the UHECR could consist all of a single helicity. Also the differ-
ent quarks could have different dispersion parameters. See however Sect. 5.4
for remarks on the approach of [9] which can be applied to deduce combined
constraints in this case.

If the GZK cutoff is observed in its predicted place, this will place limits
on the parameters ηp and ηπ. For example, if the GZK cutoff is eventually
observed to be somewhere between 2 and 7 times 1019 eV then there are strong
constraints of O(10−11) on ηp and ηπ [5]. As a final comment, an interesting
possible consequence of LV is that with upper thresholds, one could possibly
reconcile the AGASA and Hi-Res/Fly’s Eye experiments. Namely, one can
place an upper threshold below 1021 eV while keeping the GZK threshold
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near 5×1019 eV. Then the cutoff would be “seen” at lower energies but extra
flux would still be present at energies above 1020 eV, potentially explaining
the AGASA results [5]. The region of parameter space for this scenario is
terribly small, however, again of O(10−11).

5.4 Constraints at O(E2/M2)?

As previously mentioned, CPT symmetry alone could exclude the dimension
five LV operators that give O(E/M) modifications to particle dispersion rela-
tion, and in any case the constraints on those have become nearly definitive.
Hence it is of interest to ask about the O(E2/M2) modifications. We close
with a brief discussion of the constraints that might be possible on those, i.e.
constraints at O(E2/M2).

As discussed above, the strength of constraints can be estimated by the
requirement η4p4/M2 � m2, which yields

η4 �
(√

m

1 eV
100TeV
p

)4

. (21)

Thus, for electrons, an energy around 1017 eV is needed for an order unity
constraint on η4, and we are probably not going to see any effects directly
from such electrons.

For protons an energy ∼1018 eV is needed. This is well below the UHE
cosmic ray energy cutoff, hence if and when Auger [7] confirms the identity of
UHE cosmic rays as protons at the GZK cutoff, we will obtain an impressive
constraint of order η4 � 10−5 from the absence of vacuum Čerenkov radiation
for 1020 eV protons. From the fact that the GZK threshold is not shifted, we
will obtain a constraint of order η4 � −10−2, assuming equal η4 values for
proton and pion.

In fact, if one assumes the cosmic rays near but below the GZK cutoff are
hadrons, one already obtains a strong bound [9]. Depending on the species
dependence of the LV coefficients, bounds of order 10−2 or better can be placed
on η4. The bounds claimed in [9] are actually two sided, and it is worthwhile
to explain how such bounds come about for a single source particle. Up to this
point it has been necessary to use at least two reactions with different source
particles to derive a two sided bounds. For example, the Crab constraints
rely on the existence of both 50 TeV electrons and photons, treating each
as a fundamental particle with its own LV coefficient. In contrast, the two
sided bounds in [9] are derived by using a parton model for particles where
the LV coefficients apply to the constituent partons. By considering many
different outgoing particle spectra from an incoming hadron in combination
with the parton approach the authors of [9] are able to find sets of reactions
that yield two sided bounds. Hence, the parton approach is extremely useful
as it dramatically increases the number of constraints that can be derived
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from a single incoming particle. However, it also requires more assumptions
about the behavior of the parton distributions at cosmic ray energies.

Impressive constraints might also be obtained from the absence of neutrino
vacuum Čerenkov radiation: putting in 1 eV for the mass in (21) yields an
order unity constraint from 100 TeV neutrinos, but only if the Čerenkov rate
is high enough. The rate will be low, since it proceeds only via the non-local
charge structure of the neutrino. Recent calculations [70] have shown that the
rate is not high enough at that energy. However, for 1020 eV UHE neutrinos,
which may be observed by the proposed EUSO and/or OWL satellite obser-
vatories, the rate will be high enough to derive a strong constraint. The value
of the constraint would depend on the emission rate, which has not yet been
computed. For a gravitational Čerenkov reaction, the rate (which is lower but
easier to compute than the electromagnetic rate) would be high enough for a
neutrino from a distant source to radiate provided η4 � 10−2. Hence in this
case one might obtain a constraint of order η4 � 10−2, or stronger in the
electromagnetic case.

A time of flight constraint at order (E/M)2 might be possible [71] if gamma
ray bursts produce UHE (∼1019 eV) neutrinos, as some models predict, via
limits on time of arrival differences of such UHE neutrinos vs. soft photons (or
gravitational waves). Another possibility is to obtain a vacuum birefringence
constraint with higher energy photons [34], although such a constraint would
be less powerful since EFT does not imply that the parameters for opposite
polarizations are opposite at order (E/M)2. If future GRB’s are found to be
polarized at ∼100 MeV, that could provide a birefringence constraint |ξ4+ −
ξ4−| � 1.

6 Conclusion

At present there are only hints, but no compelling evidence for Lorentz vio-
lation from quantum gravity. Moreover, even if LV is present, the use of EFT
for its low energy parametrization is not necessarily valid. Nevertheless, we
believe that the constraints derived from the simple ideas discussed here are
still important. They allow tremendous advances in observational reach to
be applied in a straightforward manner to limit reasonable possibilities that
might arise from fundamental Planck scale physics. Such guidance is espe-
cially welcome for the field of quantum gravity, which until the past few years
has had little connection with observed phenomena.
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1 Introduction

What is the fate of Lorentz symmetry at Planck scale? This question was
the main theme of the Winter School and, as the reader could see from the
proceedings, there are many possible answers. Here I would like to describe one
possibility, whose central postulate is that in spite of the fact that departures
from Special Relativity are introduced at scales close to Planck scale, one keeps
unchanged the central physical message of the theory of relativity, namely the
equivalence of all (inertial) observers. This justifies the term Relativity in the
title.

To be more specific, let us start with the set of postulates of Doubly Special
Relativity1 (I will use the acronym DSR in what follows) or Special Relativity
with Two Observer Independent Scales, as proposed in [1, 2] (see also [3, 4].)
These postulates can be formulate as follows.

– One assumes that the relativity principle holds, i.e., equivalence of all iner-
tial observers in the sense of Galilean Relativity and Special Relativity is
postulated.

– There are two observer independent scales: one of velocity c, identified with
the speed of light2, and second of dimension of mass κ (or length λ =
κ−1), identified with the Planck mass. Of course, it is assumed that in the
limit κ→ ∞ DSR becomes the standard Special Relativity. This postulate
is the reason for the term “Doubly”. Since it turns out that the action

1 Some authors prefer to use the name Deformed Special Relativity, fortunately
leading to the same acronym

2 Some readers may be confused already at this point since it is often claimed
that DSR predicts dependence of the speed of massless particles on energy they
carry, so that the speed of light is energy (and wavelength) dependent. Then the
question arises to which speed this postulate refers to. As I will show below there
are, arguably, good reasons to believe that in DSR the speed of light equals 1,
independently of the energy.
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of symmetry generators must be deformed in DSR, one may talk about
“Deformed Special Relativity”.

It is a quite nontrivial problem, though, how these postulates can be real-
ized in practice, given the fact that at the Planck scale we are to have to do
with two scales of length and/or mass. Indeed, we know both from the theory
and numerous experiments that in Special Relativity different observers do
attribute different lengths and masses to the same measurements: as it is well
known, we have to do with Lorentz-FitzGerald contraction and relativistic
corrections to mass. How is it then possible to have at the same time relativ-
ity principle and the observer-independent scale of length or mass? It turns
out that it is possible, but the price to pay is quite high, as one presumably
must describe space-time in terms of non-commutative geometry, and to talk
about space-time symmetries, one should use the language of quantum groups.

It should be noted also that as an immediate consequence of the postulates
DSR theory should possess (like Galilean and Special Relativity theories) a
ten dimensional group of symmetries, corresponding to rotations, boosts, and
translations, which however, as a result of the presence of the second scale,
cannot be just the linear Poincaré group . This immediately poses a problem.
Namely, if we have a theory with observer independent scale of mass, then
it follows that it should be expected that the standard Special Relativistic
Casimir E2−p2 = m2 is to be replaced by some nonlinear mass-shell relation,
between energy and three-momentum (which would involve the parameter
κ3.) Thus the second scale κ must be encoded into the mass-shell condition
so that it is kept invariant by symmetry transformations. But then it follows
that the speed of massless particles defined as ∂E/∂p would be dependent on
the energy they carry, which makes it hard to understand what would be the
operational meaning of the observer-independent speed of light. Below I will
suggest ways out of this dilemma.

I should warn the reader that the construction of the theory of Doubly
Special relativity is not completed yet; in fact we do not even have a single
DSR candidate, which would satisfy all the requirements of internal and con-
ceptual self-consistency. Nevertheless during the last three years many results
have been obtained, and for example we now control pretty well the one par-
ticle sector of the theory, both technically and conceptually. However, many
problems remain, for example, we still do not understand the multi-particle
sector of DSR theory.

The structure of this notes corresponds to the structure of the lectures I
gave at the Winter School. The next section corresponding to the first lecture
is devoted to the questions whether and how DSR could emerge as an ap-
propriate limit of quantum gravity. The complete answer to these questions
is still unknown but we have some number of evidences suggesting that in-
deed DSR may be rooted in quantum gravity. The third section of these notes
3 Note however that there exists a class of models of DSR, in which the dispersion

relation between energy and momentum is not deformed (see below.)
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is devoted to describing techniques used in a particular, best developed ap-
proach to DSR, based on the so-called κ-Poincaré algebra and κ-Minkowski
space-time. In Sect. 4 I would like to describe main results obtained in the
DSR framework, as well as bunch of open problems, mainly related to the
multi-particle processes.

2 DSR from Quantum Gravity?

If the DSR idea is correct, it is quite natural to expect that Doubly Special
Relativity emerges somehow as a limit of quantum gravity. It is rather clear
why it must be so. In the standard Special Relativity we have only one scale,
and there is no natural way in which another scale of mass and/or length
could be introduced purely in Special Relativistic setting. On the other hand,
in quantum gravity we have, in addition to the velocity scale c, three additional
dimensionful constants, G, � (which I often set equal 1 in what follows), and
(sometimes) the cosmological constant Λ. The immediate idea is that in the
limiting procedure, in which the gravitational interactions as well as quantum
effects become negligible, and the space-time becomes effectively flat (at least
locally), some trace of these constants remains, giving rise to new observer-
independent scale κ. In this section I will try to convince the reader that such
scenario may indeed result from quantum theory of gravity.

Usually we take for granted that the G → 0, (and possibly Λ → 0 if we
start with non-zero cosmological constant) limit of (quantum) gravity is just
the Minkowski space-time. But perhaps this is not correct, and we are forced
to take the limit (especially in the case in which point particles are present)
such that either

1. limG,Λ→0

√
G
Λ = κ−1 �= 0, or alternatively,

2. limG,�→0

√
�

G = κ �= 0.

It is not clear which of these scenarios (if any) is realized in Nature, but
there are some indirect evidences in favor of the claim that indeed it might
be so.

Let us try to investigate the first scenario following the ideas presented in
[5]. To this end let us consider first the three-dimensional quantum gravity
with positive cosmological constant Λ. Then it is well known [6] that the
excitations of 3d quantum gravity with cosmological constant transform under
representations of the quantum deformed deSitter algebra SOq(3, 1), with
z = ln q behaving in the limit of small4 Λ�

2/κ2 as z ≈ √
Λ�/κ.

I will not discuss at this point the notion of quantum deformed algebras
(Hopf algebras) in much details (the book [7] would be a good references for
the reader who wants to study this exciting branch of mathematics.) It will

4 Since in 3d, the dimension of the gravitational constant is 1/kg, we write G = κ−1.
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suffice to say that quantum algebras consist of several structures, the most
important for our current purposes would be the universal enveloping algebra,
which could be understand as an algebra of brackets among generators, which
are equal to some analytic functions of them. Thus the quantum algebra is
a generalization of a Lie algebra, and it is worth observing that the former
reduces to the latter in an appropriate limit. Quantum algebras start playing
an important role in various branches of theoretical physics; in particular,
in some cases, they can play a role of relativistic symmetries in some field
theoretical models (see an excellent, pedagogical exposition in [8].) In the
case of quantum algebra SOq(3, 1) the algebraic part looks as follows (the
parameter z used below is related to q by z = ln q)

[M2,3,M1,3] =
1
z

sinh(zM1,2) cosh(zM0,3)

[M2,3,M1,2] =M1,3

[M2,3,M0,3] =M0,2

[M2,3,M0,2] =
1
z

sinh(zM0,3) cosh(zM1,2)

[M1,3,M1,2] = −M2,3

[M1,3,M0,3] =M0,1

[M1,3,M0,1] =
1
z

sinh(zM0,3) cosh(zM1,2)

[M1,2,M0,2] = −M0,1

[M1,2,M0,1] =M0,2

[M0,3,M0,2] =M2,3

[M0,3,M0,1] =M1,3

[M0,2,M0,1] =
1
z

sinh(zM1,2) cosh(zM0,3) (1)

Since this is our first encounter with quantum algebra let us pause for a mo-
ment to discuss its main features. First of all, we observe that on the right
hand sides we do not have linear functions generators, as in the Lie algebra
case, but some (analytic) functions of them. However we still assume that the
brackets are antisymmetric and that Jacobi identity holds.

Exercise 1. Convince yourself by direct inspection that for the algebra (1)
Jacobi identities indeed hold.

It follows from this observation that contrary to the Lie algebras case, we
are now entitled to use any analytic functions of the initial set of generators
as a basis of the quantum algebra (in the Lie algebra case we can only take
linear combinations of them.) It should be stressed already at this point that
quantum algebras possess more structures than just the enveloping algebra
structure (for more details see [7]); some of them will be relevant in what
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follows. Note that in the limit z → 0 the algebra (1) becomes the standard
algebra SO(3, 1), and this is the reason for using the term SOq(3, 1).

Exercise 2. Denote by Mz
µν the generators of the algebra (1) and by Mµν

the generators of the standard SO(3, 1) algebra (obviously the equation
limz→0 M

z
µν = Mµν should hold.) Find explicit expressions for Mz

µν as func-
tions of Mµν and z. (If this exercise happens to be too hard do that only up
to the next-to-leading order in z.)

The SO(3, 1) Lie algebra is the three dimensional de Sitter algebra and
it is well known how to obtain the three dimensional Poincaré algebra from
it. First of all one has to single out the energy and momentum generators
of right physical dimension (note that the generators Mµν of (1) are dimen-
sionless): one identifies three-momenta Pµ ≡ (E,Pi) (µ = 1, 2, 3, i = 1, 2) as
appropriately rescaled generatorsM0,µ and then one takes the Inömü–Wigner
contraction limit (see, for example, [9].)

Let us try therefore to proceed in an analogous way and contract the
algebra (1). To this aim we must first rescale some of the generators by an
appropriate scale, provided by combination of dimensionful constants present
in definition of the parameter z

E =
√
Λ�M0,3

Pi =
√
Λ�M0,i

M =M1,2

Ni =Mi,3 (2)

Taking now into account the relation z ≈ √
Λ�/κ, which holds for small Λ,

from
[M2,3,M1,3] =

1
z

sinh(zM1,2) cosh(zM0,3)

we find
[N2, N1] =

κ

�
√
Λ

sinh(�
√
Λ/κM) cosh(E/κ) (3)

Similarly from

[M0,2,M0,1] =
1
z

sinh(zM1,2) cosh(zM0,3)

we get
[P2, P1] =

√
Λ�κ sinh(

√
Λ�/κM) cosh(E/κ) (4)

Similar substitutions can be made in other commutators of (1). Now going to
the contraction limit Λ→ 0, while keeping κ constant we obtain the following
algebra
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[Ni, Nj ] = −Mεij cosh(E/κ)
[M,Ni] = εijN j

[Ni, E] = Pi

[Ni, Pj ] = δij κ sinh(E/κ)
[M,Pi] = εijP j

[E,Pi] = 0
[P2, P1] = 0 (5)

This algebra is called the three dimensional κ-Poincaré algebra (in the stan-
dard basis.)

It turns out that this contracted algebra is again a quantum algebra, i.e.,
after the contraction all the additional structures of SOq(3, 1) became the
analogous structures of the new algebra (which is not obvious a priori because,
in principle, it may happen that during the contraction procedure additional
structures of the quantum algebra may become not well defined). This really
nontrivial and remarkable result has been obtained in early nineties in [10, 11].

Let us pause for a moment here to make couple of comments. First of all,
one easily sees that in the limit κ → ∞ from the κ-Poincaré algebra algebra
(5) one gets the standard Poincaré algebra. Second, we see that in this algebra
both the Lorentz and translation sectors are deformed. However, as I have been
stressing already, in the case of quantum algebras one is free to change the
basis of generators in arbitrary, analytic way. It turns out that there exists such
a change of basis that the Lorentz part of the algebra becomes classical (i.e.,
undeformed.) Such a basis, derived in [12], is called bicrossproduct (because
of the remarkable bicrossproduct structure of the full quantum algebra, see
[7]), and the Doubly Special Relativity model (both in 3 and 4 dimensions)
based on such an algebra is called DSR1. In this basis the algebra looks as
follows

[Ni, Nj ] = −εijM
[M,Ni] = εijN j

[Ni, E] = Pi

[Ni, Pj ] = δij
κ

2

(

1 − e−2E/κ +
P 2

κ2

)

− 1
κ
PiPj

[M,Pi] = εijP j

[E,Pi] = 0
[P1, P2] = 0 . (6)

Exercise 3. Derive explicit transformations from variables in (5) to variables
in (6) (solution can be found in [12].)

Note now that the algebra (6) is exactly of the form needed in Doubly
Special Relativity. By construction this is the algebra of symmetries of flat
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space, being an appropriate limit of the algebra of symmetries of states of
quantum gravity. Moreover it manifestly contains the observer-independent
scale of dimension of mass κ.

Exercise 4. Check that κ is the observer-independent scale in the sense that
if |P | = κ, then δ|P | = 0, where δ denotes the change under infinitesimal
action of boosts (solution can be found in [3].)

This shows that, at least in principle, one can try to construct a theory,
which satisfies principles of DSR, and that such a theory may be neither
inconsistent, nor trivial. Of course to construct a theory of particle kinematics,
with symmetries defined by (5), (6) much more is needed; for example we must
know how to compose momenta for multiparticle systems, what is the form
of conservation laws, etc. I will discuss these issues in the following sections
below.

The algebras (5), (6) has been derived from the limit of the algebra of
symmetries of three dimensional gravity, which, as it is well known, has some
remarkable features, namely it is a topological field theory with no dynam-
ical degrees of freedom. The question arises as to if it is possible to repeat
this analysis in the most interesting, four dimensional case. One can expect
that this latter case would be much more complex: to go to the appropri-
ate limit reminding the Special Relativistic setting one should first switch off
the dynamical degrees of freedom of gravity. The good news is that in the
limit, in which the gravitational constant goes to zero, four dimensional grav-
ity becomes a topological field theory again, reminding the three-dimensional
situation. However, I must admit that it is not known if there exists a limit
of four dimensional quantum gravity, which results in DSR theory. There are,
however, some circumstantial evidences in favor of such a claim.

In the four-dimensional case the excitations of ground state5 of a quan-
tum gravity theory are conjectured to transform under representations of the
quantum deformed de Sitter algebra SOq(3, 2), with z = ln q behaving in the
limit of small Λκ−2 as, z ≈ Λκ−2 [13, 14, 15, 16]6. Then (see [5] for more
details) one again takes the limit, which this time is much more involved,
since one must not only rescale variables, as it was done above, but also to
renormalize them (see also [10]), in order to get finite result. It turns out that
now we have to do with one parameter family of contractions, labelled by real,
positive parameter r: for 0 < r < 1 as a result of contraction one obtains the
standard Poincaré algebra, for r > 1 the contraction does not exists and only
for a single value r = 1 the contraction gives the desired four dimensional
5 We restrict our attention to the ground state, because we are interested only in

the limit in which all local degrees of freedom of quantum gravity are switched off.
After all our goal is to formulate a theory which is to replace Special Relativity!

6 From now on I put � equal 1.
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κ-Poincaré algebra. It remains therefore an open problem whether and how
quantum gravity singles out the value for r and is this value 1?

We see therefore that it is possible to obtain the DSR1 algebra by con-
tracting the algebras of symmetries of quantum gravity, in dimensions 3 and
4. This strongly suggests that indeed this algebra would be an algebra of sym-
metries of particle kinematics taking part in the flat space. It is interesting
therefore that, in some cases at least, there are traces of quantum gravity in
this algebra. I must stress, however that it remains to prove rigorously that
the algebra SOq(3, 2) indeed plays the conjectured role in quantum gravity.

And now something completely different. In Special Relativity the Poincaré
algebra plays dual role: it is an algebra of symmetries of space-time and at the
same time it labels momenta and spin of a particle. Deformed Poincaré alge-
bra should also play such a dual role, so now let us investigate the algebras of
charges carried by point particles coupled to quantum gravity. As I will show
in Sect. 3 below, in the DSR framework it turns out that the four momentum
of a particle is not a point in the flat Minkowski space, as in Special Relativity,
but instead, the manifold of momenta is a curved manifold of constant curva-
ture, κ−2 [18, 20]. But then, by the same token, positions, which are identified
with “translations” of momenta, cannot commute, so that the space-time of
DSR should necessarily be a non-commutative manifold, called κ-Minkowski
space-time [12, 21]. Let us see therefore, how this picture emerges from quan-
tum gravity, this time coupled to point particles, and without cosmological
constant.

In what follows I will review the results obtained in [22]. Let us start with
the case of three-dimensional quantum gravity now coupled to a point parti-
cle. Then it is well known (see the detailed and clear exposition in [23] and
references therein) that since in 3d gravity does not have any dynamical de-
grees of freedom, the theory is fully characterized by Poincaré charges carried
by the particle. In other words the theory reduces to a theory of the phase
space of the particle, which is different from the phase space of free particles,
as a result of the modifications induced by topological degrees of freedom of
gravity. This phase space is characterized by the following properties [23]

– The coordinates of the particle (understood as variables on the phase space,
which are canonically conjugated to momenta) do not commute and instead

[x0, xi] = − 1
κ
xi, [xi, xj ] = 0 . (7)

(The bracket above is either the Poisson bracket or the commutator.) Such
a non-commutative space-time is called κ-Minkowski.

– The space of (three-) momenta is not the flat R3 manifold, but the max-
imally symmetric space of constant curvature −κ (anti de Sitter space of
momenta).

– Last but not least it has been shown in numerous works on 3d quantum
gravity that the full Hopf κ-Poincaré algebra with all the quantum group
structures plays the role (see e.g., [17] and references therein.)
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But as I will show in Chap. 3, these are exactly the properties of phase
space of a particle in DSR (in the case of both 3 and 4 dimensional space-
time.) Note in passing an interesting duality between curvature and non-
commutativity7

Curvature of momentum space
�

Non-commutativity of position space

As I will show below this duality can be understood as a consequence of
the co-product structure of quantum Poincaré algebra.

Thus we see again that kinematics of particles in three dimensions is de-
scribed by the DSR-like structure with observer independent scale. The ques-
tion arises as to if something similar can happen in four space-time dimensions.
I have only circumstantial evidences in favor of such claim, and the argument
goes as follows [22].

The main idea is to construct an experimental situation that forces a di-
mensional reduction from the four dimensional to the 2+1 dimensional theory.
It is interesting that this can be done in quantum theory, using the uncertainty
principle as an essential element of the argument. Let us consider a free ele-
mentary particle in 3 + 1 dimensions, whose mass is less than G−1 = κ. The
motion of the particle will be linear, at least in some classes of coordinates
systems, not accelerating with respect to the natural inertial coordinates at
infinity. Let us consider the particle as described by an inertial observer who
travels perpendicular to the plane of its motion, which I will call the z direc-
tion. From the point of view of that observer, the particle is in an eigenstate
of longitudinal momentum, P̂ total

z , with some eigenvalue Pz. Since the particle
is in an eigenstate of P̂ total

z its wavefunction will be uniform in z, with wave-
length L where (note that I assume here that L is so large that I can trust the
standard uncertainty relation; besides this uncertainty relation is not being
modified in some formulations of DSR)

L =
1

P total
z

(8)

At the same time, we assume that the uncertainties in the transverse po-
sitions are bounded a scale r, such that r � 2L. Then the wavefunction for
the the particle has support on a narrow cylinder of radius r which extend
uniformly in the z direction. Finally, we assume that the state of the gravi-
tational field is semiclassical, so that to a good approximation, within C the
semiclassical Einstein equations hold.

Gab = 8πG〈T̂ab〉 (9)

7 See the insightful discussion in [7], in which Shahn Majid argues that this duality
indicates a deep relation between non-commutativity and quantization of gravity.
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Note that we do not have to assume that the semiclassical approximation
holds for all states. We assume something much weaker, which is that there are
subspaces of states in which it holds. This assumption is, in a sense, analogous
to the assumption above that we are interested only in the analysis of ground
state of quantum gravity.

Since the wavefunction is uniform in z, this implies that the gravitational
field seen by our observer will have a spacelike Killing field ka = (∂/∂z)a.

Thus, if there are no forces other than the gravitational field, the particle
described semiclassically by (9) must be described by an equivalent 2 + 1 di-
mensional problem in which the gravitational field is dimensionally reduced
along the z direction so that the particle, which is the source of the gravita-
tional field, is replaced by a punctures.

The dimensional reduction is governed by a length d, which is the extent
in z that the system extends. We cannot take d < L without violating the
uncertainty principle. It is then convenient to take d = L. Further, since the
system consists of the particle, with no intrinsic extent, there is no other scale
associated with their extent in the z direction. We can then identify z = 0 and
z = L to make an equivalent toroidal system, and then dimensionally reduce
along z. The relationship between the four dimensional Newton’s constant G4

and the three dimensional Newton’s constant G3 = G is given by

G3 =
G4

L
=
G4P tot

z

�
(10)

Thus, in the analogous 3 dimensional system, which is equivalent to the
original system as seen from the point of view of the boosted observer, the
Newton’s constant depends on the longitudinal momentum.

Of course, in general there will be an additional scalar field, corresponding
to the dynamical degrees of freedom of the gravitational field. We will for the
moment assume that these are unexcited, but exciting them will not affect
the analysis so long as the gravitational excitations are invariant also under
the Killing field and are of compact support.

Now we note that, if there are no other particles or excited degrees of
freedom, the energy of the system can to a good approximation be described
by the hamiltonian H of the two dimensional dimensionally reduced system.
This is described by a boundary integral, which may be taken over any circle
that encloses the particle. But it is well known that in 3d gravity H is bounded
from above. This may seem strange, but it is easy to see that it has a natural
four dimensional interpretation.
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The bound is given by

M <
1

4G3
=

L

4G4
(11)

where M is the value of the ADM hamiltonian, H. But this just implies that

L > 4G4M = 2RSch (12)

i.e. this has to be true, otherwise the dynamics of the gravitational field in
3+1 dimensions would have collapsed the system to a black hole! Thus, we see
that the total bound from above of the energy in 2+1 dimensions is necessary
so that one cannot violate the condition in 3 + 1 dimensions that a system be
larger than its Schwarzschild radius.

Note that we also must have

M > P tot
z =

�

L
(13)

Together with (12) this implies L > lPlanck, which is of course necessary if
the semiclassical argument we are giving is to hold.

Now, we have put no restriction on any components of momentum or
position in the transverse directions. So the system still has symmetries in the
transverse directions. Furthermore, the argument extends to any number of
particles, so long as their relative momenta are coplanar. Thus, we learn the
following.

Let HQG be the full Hilbert space of the quantum theory of gravity, coupled
to some appropriate matter fields, with Λ = 0. Let us consider a subspace of
states Hweak which are relevant in the low energy limit in which all energies
are small in Planck units. We expect that this will have a symmetry algebra
which is related to the Poincaré algebra P4 in 4 dimensions, by some possible
small deformations parameterized by G4 and �. Let us call this low energy
symmetry group P4

G.
Let us now consider the subspace of Hweak which is described by the

system we have just constructed . It contains the particle, and is an eigenstate
of P̂ tot

z with large P tot
z and vanishing longitudinal momentum. Let us call this

subspace of Hilbert space HPz
.

The conditions that define this subspace break the generators of the (pos-
sibly modified) Poincaré algebra that involve the z direction. But they leave
unbroken the symmetry in the 2 + 1 dimensional transverse space. Thus, a
subgroup of P3+1

G acts on this space, which we will call P2+1
G ⊂ P3+1

G .
We have argued that the physics in HPz

is to good approximation described
by an analogue system in of a particle in 2 + 1 gravity. However, we know
from the results mentioned above that the symmetry algebra acting there is
not the ordinary 3 dimensional Poincaré algebra, but the κ-Poincaré algebra
in 3 dimensions, with

κ−1 =
4G4P tot

z

�
(14)
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Now we can note the following. Whatever P4
G is, it must have the following

properties:

– It depends on G4 and �, so that it’s action on each subspace HPz
, for each

choice of Pz, is the κ deformed 3d Poincaré algebra, with κ as above.
– It does not satisfy the rule that momenta and energy add, on all states in
H, since they are not satisfied in these subspaces.

– Therefore, whatever P4
G is, it is not the classical Poincaré group.

Thus the theory of particle kinematics at ultra high energies is not Special
Relativity, and the arguments presented above suggest that it might be Doubly
Special Relativity. So it is good time now to start discussing the structures of
this theory.

3 Doubly Special Relativity and the κ-Poincaré Algebra

Soon after pioneering papers of Amelino-Camelia [1, 2] it was realized in [3]
and [4] that the κ-Poincaré algebra [10, 11, 12] is a perfect mathematical
setting to describe one particle kinematics in DSR. Let us recall from the
preceding section that in particular, in the bicrossproduct basis the brackets
of rotations Mi, boosts Ni, and the components of momenta Pµ read8

[Mi,Mj ] = i εijkMk, [Mi, Nj ] = i εijkNk ,

[Ni, Nj ] = −i εijkMk , (15)

[Mi, Pj ] = i εijkPk, [Mi, P0] = 0 , (16)

[Ni, Pj ] = i δij

(
κ

2

(
1 − e−2P0/κ

)
+

1
2κ

P 2

)

− i 1
κ
PiPj (17)

[Ni, P0] = i Pi (18)

It is important to note that the algebra of Mi Ni is just the standard
Lorentz algebra, so one of the first conclusions is that the Lorentz sector of
κ-Poincaré algebra is not deformed. Therefore in DSR theories, in accordance
with the first postulate above, the Lorentz symmetry is not broken but merely
nonlinearly realized in its action on momenta. This simple fact has lead some
authors (see e.g., [24, 25]) to the claim that DSR is nothing but the standard
Special Relativity in non-linear disguise. As we will see this view is clearly
wrong, simply because the algebra (15)–(18) describes only half of the phase
space of the particle, and the full phase space algebra cannot be reduced to
the one of Special Relativity.
8 From now on I will be discussing the four-dimensional case only. However, the

reader can easy convince her(him)self that what will be said here applies with
minor and obvious modifications in other dimensions as well. Notice that now I
use the QFT convention of adding the “i” on the right-hand-side of the algebra.
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As one can easily check, the Casimir of the κ-Poincaré algebra reads

κ2 cosh
P0

κ
− P 2

2
eP0/κ =M2 . (19)

Exercise 5. Check that (19) is indeed the Casimir of the algebra (15)–(18)
i.e., its commutators with all the generators of κ-Poincaré algebra vanish. Is it
the only possible Casimir of this algebra? Compute the velocity v = ∂P0/∂|P |.
How the behavior of this velocity depends on the sign of κ?

It follows from (19) that the value of three-momentum |P | = κ corre-
sponds to infinite energy P0 = ∞. One can check easily (see Exercise 4 above)
that in this particular realization of DSR κ is indeed observer independent
[3, 4] (i.e., if a particle has momentum |P | = κ for some observer, it has
the same momentum for all, Lorentz related, observers.) One also sees that
the speed of massless particles, naively defined as derivative of energy over
momentum, increases monotonically with momentum and diverges for the
maximal momentum |P | = κ, if κ is positive. As I mentioned already in the
DSR terminology, the theory based on the algebra (15)–(18) with Casimir
(19) is sometimes called DSR1.

One should note at this point that the bicrossproduct algebra above is
not the only possible realization of DSR. For example, in [26, 27] Magueijo
and Smolin proposed and carefully analyzed another DSR proposal, called
sometimes DSR2. In DSR2 the Lorentz algebra is still not deformed and there
are no deformations in the brackets of rotations and momenta. The boosts–
momenta generators have now the form

[Ni, pj ] = i
(

δijp0 − 1
κ
pipj

)

, (20)

and
[Ni, p0] = i

(
1 − p0

κ

)
pi . (21)

It is easy to check that the Casimir for this algebra has the form

M2 =
p20 − p2

(
1 − p0

κ

)2 . (22)

Exercise 6. Check that (22) is indeed the Casimir of the DSR2 algebra (20),
(21). Compute the velocity v = ∂P0/∂|P |. Find relations between DSR1 and
DSR2 momentum variables (the answer can be found in [19, 21].)

Moreover there is a basis of DSR, closely related to the famous Snyder
theory [28], in which the energy-momentum space algebra is purely classical
(it was first found in [29] and further analyzed in [19, 21].)

Exercise 7. Find explicit transformation from DSR1 to the classical basis, in
which all the brackets are identical to those of the standard Poincaré algebra.
(See [19, 21], where the relation of the DSR algebra in classical basis and
Snyder’s theory is analyzed in details.)
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3.1 Space-Time of DSR

The formulation of DSR in the energy-momentum space is clearly incomplete,
as it lacks any description of the structure of space-time. DSR has been for-
mulated in a somehow unusual way: one started with the energy–momentum
space and only then the problem of construction of space-time had been con-
sidered. Usually we do the opposite, for example in the standard formulation
of Special Relativity one starts with clear operational definition of space-time
notions (distance, time interval) and only then the energy-momentum space
and phase space is being constructed.

Exercise 7. (Difficult9.) Formulate Special Relativity in the operational way,
taking as a starting point the space of energy and momenta.

There are in principle many ways how the phase space can be constructed.
For example in [30] one constructs the position space along the same lines as
the energy-momentum space has been constructed in [26, 27]. Here, following
[21], I take another route. As I have been stressing in the preceding section,
one of the distinctive features of the κ-Poincaré algebra is that it possesses
additional structures that make it a Hopf algebra. Namely one can construct
the so called co-products for the rotation, boosts, and momentum generators,
which, in turn, can be used to provide a procedure to construct the phase
space in a unique way.

The co-product is the mapping from the algebra A to the tensor product
A ⊗ A satisfying some requirements that make it in a sense dual to alge-
bra multiplication (see [7] for details), which essentially provides a rule how
the algebra acts on products (of functions, and, in physical applications, on
multiparticle states.) For the bicrossproduct κ-Poincaré algebra (15)–(18) the
co-products read

∆(P0) = 1l ⊗ P0 + P0 ⊗ 1l (23)
∆(Pk) = Pk ⊗ e−P0/κ + 1l ⊗ Pk (24)
∆(Mi) = Mi ⊗ 1l + 1l ⊗Mi (25)

∆(Ni) = 1l ⊗Ni +Ni ⊗ e−P0/κ − 1
κ
εijkMj ⊗ Pk (26)

In order to construct the one-particle phase space we must first introduce
objects that are dual to Mi, Ni, and Pµ. These are the matrix Λµν and the
vector Xµ. Let us briefly interpret their physical meaning. Xµ are to be dual
to momenta Pµ, which clearly indicates that they should be interpreted as
translation of momenta, in other words the positions. The duality between
Λµν and Mµν = (Mi, Ni) is a bit more tricky. However if one interprets Mµν

in analogy to the interpretation of momenta, i.e., as Lorentz charge carried
9 By this I mean that I do not quite know how to solve it (as a matter of fact I

believe nobody does)!
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by the particle, that is its angular momentum, then the dual object Λµν has
clear interpretation of Lorentz transformation. Thus we have the structure
of the form G × MP, where G is the Poincaré group acting on the space
of Poincaré charges of the particle MP. We see therefore that we can make
use of the powerful mathematical theory of Lie-Poisson groups and co-adjoint
orbits (see, for example, [31, 32]) and their quantum deformations.

Following [33] and [34] we assume the following form of the co-product on
the group

∆(Xµ) = Λµ
ν ⊗Xν +Xµ ⊗ 1l (27)

and
∆(Λµ

ν) = Λµ
ρ ⊗ Λρ

ν (28)

The next step is to define the pairing between elements of the algebra and
of the group in a canonical way that establish the duality between these two
structures.

〈Pµ,X
ν〉 = iδνµ (29)

〈Mαβ , Λµ
ν〉 = i

(
gαµδβν − gβµδαν

)
(30)

〈Λµ
ν , 1〉 = δµν (31)

In (30) gαµ is the Minkowski space-time metric. This pairing must be consis-
tent with the co-product structure in the following sense

〈A,XY 〉 = 〈A(1),X〉〈A(2), Y 〉 , (32)

〈AB,X〉 = 〈A,X(1)〉〈B,X(2)〉 , (33)

The rules (29)–(33) make it possible to construct the commutator algebra
of the phase space. To this end one makes use of the Heisenberg double pro-
cedure [32, 34], that defines the brackets in terms of the pairings as follows
(no summation over repeated indices here!)

[Xµ, Pν ] = Pν(1)

〈
Xµ

(1), Pν(2)

〉
Xµ

(2) − PνX
µ , (34)

[Xµ,Mρ
σ] = M(1)

ρ
σ

〈
X(1)

µ,M(2)
ρ
σ

〉
X(2)

µ −Mρ
σX

µ, (35)

and analogously for Λµ
ν commutators, where on the right hand side we make

use of the standard (“Sweedler”) notation for co-product

∆T =
∑

T(1) ⊗ T(2) .

As an example let us perform these steps in the case of the bicrossproduct
κ-Poincaré algebra of DSR1. It follows from (24), and (29), and (33) that

〈Pi,X0Xj〉 = − 1
κ
δij , 〈Pi,XjX0〉 = 0 ,

from which one gets
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[X0,Xi] ≡ X0Xi −XiX0 = − i
κ
Xi . (36)

Similarly, using (34) we get the standard relations

[P0,X0] = −i , [Pi,Xj ] = i δij . (37)

It turns out that the phase space algebra contains one more non-vanishing
commutator (which can be, of course, also obtained from Jacobi identity),
namely

[Pi,X0] = − i
κ
Pi . (38)

Thus we have constructed the phase space of the bicrossproduct κ-Poincaré
algebra of DSR1. Let us stress that this construction relies heavily on the form
of co-product. However, as it will turn out below, some of the commutators
are sensitive to the particular form of the DSR, while the others are not.
In particular we will see that the non-commutativity of positions (36) is to
large extend universal for a whole class of DSR theories. The non-commutative
space-time with such Lie-like type of non-commutativity is called κ-Minkowski
space-time.

Exercise 8. Using Jacobi identity derive the brackets of boosts and positions,
assuming that they form a Lie algebra. Which algebra is it? (The answer can
be found below.)

3.2 From DSR Theory to DSR Theories

The introduction of invariant momentum (or mass) scale κ has immediate
consequences. The most important is that there is nothing sacred about the
bicrossproduct DSR presented above, as one can simply use κ to define new
energy and momentum (new basis of DSR) as analytic functions of the old
ones, to wit

Pi = Fi(Pi, P0;κ), P0 = F0(Pi, P0;κ) , (39)

the only restrictions being that the equations in (39) transform covariantly
under rotations and that in the κ → ∞ limit Pµ = Pµ, because we insist
on the right low energy limit in all the bases. Observe that such a change of
energy and momentum is not possible in a theory without any mass scale, like
special relativity and Newtonian mechanics, in which the energy momentum
spaces are linear, and the mass shell conditions are expressed by quadratic
form.

Then a natural question arises: which momenta are the “right” ones? The
hope is that the theory of quantum gravity or some other fundamental theory,
from which DSR is descending will tell what is the correct physical choice. One
can also contemplate the possibility that in the final, complete formulation of
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DSR one will have to do with some kind of “energy-momentum general covari-
ance”, i.e., that physical observables do not depend on a particular realiza-
tion of (39), like observables in general relativity do not depend on coordinate
system. Then a natural question arises: is it possible to understand trans-
formations (39) as coordinate transformations on some (energy-momentum)
space?

Surprisingly enough the answer to this question is in the positive: indeed
the transformations between DSR theories, described by (39) are nothing but
coordinate transformation of the constant curvature manifold, on which mo-
menta live. To reach this conclusion one observes first [19, 21] that it follows
from the Heisenberg double construction that both the κ-Minkowski commu-
tator (36) and the commutators between Lorentz charges Mµν and positions
Xµ are left invariant by the transformations (39). This follows from the fact
that the transformations (39) a severely constrained by assumed rotational
invariance and the fact that in the κ → ∞ limit the new energies and mo-
menta must must be the same as in the standard Special Relativity. Since the
bicrossproduct DSR variables satisfy this requirement it follows that the new
variables cannot differ from the DSR1 ones in the κ0 order. Therefore, in the
leading order, they must be of the form

Pi ≈ Pi + α
1
κ
PiP0 +O

(
1
κ2

)

, P0 = P0 + β
1
κ
P 2

0 +O
(

1
κ2

)

(40)

where α and β are numerical parameters. It turns out that in computing
the brackets of positions X and the ones of positions with boosts Heisenberg
double procedure picks up only the first terms in this expansion, and thus
the form of the commutators remains unchanged. Of course, the position-
momenta commutators are changed by the transformations (39), (40).

Exercise 9. Using expansion (40) derive the brackets of positions and four-
momenta Pµ. It would help to notice that co-product is a homomorphism and
thus ∆(ab) = ∆(a)∆(b).

Next it was realized in [18, 20] that the algebra of positions and Lorentz
charges is nothing but de Sitter SO(4, 1) algebra. The positions and Lorentz
transformations are, in turn, nothing but the transformations of the mani-
fold, whose points are energy and momenta (energy-momentum manifold.) On
this manifold positions are generators of translational symmetry, while boosts
and rotations generate Lorentz transformations. Thus the energy–momentum
manifold is a four-dimensional manifold with ten-parameter group of symme-
tries and thus it must be a maximally symmetric space of constant curvature.
It follows from the well known theorem of differential geometry that such a
manifold must be locally diffeomorphic to one of the three spaces of constant
curvature, and since the group of symmetries is SO(4, 1), this manifold must
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be de Sitter space10. Then it follows that the algebra of positions and Lorentz
transformations is just an algebra of symmetries of de Sitter space, and there-
fore it is, of course, independent of a coordinate system we use to describe
this space.

De Sitter space of momenta can be constructed as a four dimensional
surface of constant curvature κ in the five dimensional Minkowski space with
coordinates ηA, A = 0, . . . , 4, to wit

− η20 + η21 + · · · + η24 = κ2 . (41)

The SO(4, 1) generators can be decomposed into positions Xµ and Lorentz
charges Mµν , which act on ηA variables as follows

[X0, η4] =
i

κ
η0 , [X0, η0] =

i

κ
η4 , [X0, ηi] = 0 , (42)

[Xi, η4] = [Xi, η0] =
i

κ
ηi , [Xi, ηj ] =

i

κ
δij(η0 − η4) , (43)

and
[Mi, ηj ] = iεijkηk , [Ni, ηj ] = i δij η0 , [Ni, η0] = i ηi , (44)

It should be noted that there is another decomposition of SO(4, 1) generators
[18, 20], in which the resulting algebra is exactly the one considered by Snyder
[28].

On the space (41) one can built various co-ordinate systems, each related
to some DSR theory. In particular, one recovers the bicrossproduct DSR1 with
the following coordinates (which are, accidentally, the standard “cosmologi-
cal” coordinates on de Sitter space)

η0 = −κ sinh
P0

κ
− P 2

2κ
e

P0
κ

ηi = −Pi e
P0
κ

η4 = κ cosh
P0

κ
− P 2

2κ
e

P0
κ . (45)

Using (45), (43), and the Leibnitz rule, one easily recovers the commutators
(15)–(18).

Exercise 10. Check this explicitly.

Other coordinates systems, are possible, of course.

10 It turns out that all other spaces of constant curvature are also possible, if one
generalizes somehow the definition of κ-Poincaré algebra, i.e., the phase space
associated with κ-Poincaré algebra can have positive, zero, and negative curvature
(see [35] for details.)
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Exercise 11. Find the coordinates on de Sitter space of momenta, corre-
sponding to DSR2.

In particular one can choose the “standard basis” in which

Pµ = ηµ/η4 . (46)

Note that in this basis (or classical DSR) the commutators of all Poincaré
charges, Pµ and Mµν are purely classical. However, the positions brackets, as
well as the momenta/positions cross-relations are still non-trivial.

Exercise 12. Compute the bracket of positions with energy and momenta in
the classical basis.

This means that in the classical bases of DSR the (observer-independent)
scale κ disappears completely from the Lorentz sector, but is still present in
the translational one. Thus such a theory fully deserves the name DSR.

De Sitter space setting reveals the geometrical structure of DSR theories.
As we saw the energy momentum space of DSR is a four dimensional manifold
of positive constant curvature, and the curvature radius equals the scale κ. The
Lorentz charges and positions are identified with the set of ten tangent vectors
to the de Sitter energy-momentum space, and as an immediate consequence of
this their algebra is independent of any particular coordinate system on this
space. However the latter seems to be, at least naively, physically relevant.
Each such coordinate system defines for us (up to the redundancy discussed in
[20]) the physical energy and momentum. In one-particle sector the particular
choice may not be relevant, but it seems that it would be of central importance
for the proper understanding of many particles phase spaces, in particular in
analysis of the phenomenologically important issue of particles scattering and
conservation laws.

Having obtained the one-particle phase space of DSR, it is natural to pro-
ceed with construction of the field theory. Here two approaches are possible.
One can try to construct field theory on the non-commutative κ-Minkowski
space-time. Attempts to construct such a theory has been reported, for exam-
ple, in [36] and references therein, as well as in [37, 38]. This line of research
is, however, far from being able to give any definite results, though some par-
tial results, like an interesting, nontrivial vertex structure reported in [37, 38]
may shed some light on physics of the scattering processes. The major obstacle
seems to be lack of the understanding of functional analysis on the spaces with
Lie-type of non-commutativity, which is most likely a deep and hard mathe-
matical problem (already the definition of appropriate differential and integral
calculi is a mater of discussion.) Therefore it seems simpler (and in fact more
along the line of the DSR proposal, where the energy momentum space is more
fundamental than the space-time structures) to try to built (quantum) field
theory in energy-momentum space directly. This would amount to understand
how to define (quantum) fields on the curved energy-momentum space, but, in
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principle, for spaces of constant curvature at least functional analysis is well
understood. It should be noted that such an idea has been contemplated for a
long time, and in fact it was one of the main motivations of [28]. Field theories
with curved energy-momentum manifold has been intensively investigated by
Kadyshevsky and others [39], without any conclusive results, though.

4 Physics with Doubly Special Relativity

Till now I have been discussing formal aspects of Doubly Special Relativity
in a particular formulation, in which quantum algebras and non-commutative
space-time played the fundamental role. Now it is time to try to turn to more
physical questions, related with possible experimental signatures of quantum
gravity. In other contributions to this volume, the reader can find much more
detailed discussion of the “quantum gravity phenomenology”, here I would
like to concentrate on those physical aspects and problems that are directly
related to a particular formulation of DSR in terms of κ-Poincaré algebras.

4.1 Time-of-Flight Experiments and the Issue of Velocity in DSR

One of the simplest experimental tests of quantum gravity phenomenology
is the time-of-flight experiment. In this experiment which is to be performed
in a near future with good accuracy by GLAST satellite (see e.g., [40] and
references therein) one measures the energy-dependence of velocity of light
coming from a distant source. Naively, most DSR models predicts positive
signal in such an experiment (for details see [41].) Indeed, in DSR ∂E(p)/∂p
does, with an exception of the classical bases, depend on energy, which suggest
that velocity of massless particles may depend on the energy they carry. This
is the case, for example, both in the bicrossproduct DSR1 and in the Magueijo-
Smolin DSR2 model.

Of course, the velocity formula should be derived from the first principles.
In the careful analysis reported in [44] (based on the calculations presented
some time ago in [42]) the authors construct the wave packet from plane waves
moving on the κ-Minkowski space-time, and then calculate the group velocity
of such a packet, which, they claim, turns-out to be exactly v(g) = ∂E(p)/∂p11.
This result is puzzling in view of the phase space calculation of velocity, which
I will present below. Therefore let us analyze this calculation in more details.

The authors of [44] consider the wave packet built of waves moving in
non-commutative κ-Minkowski space-time, centered at (ω0,k0), to wit

Ψ(ω0,k0)(x, t) =
∫
eik·xe−iωtdµ (47)

11 Notice however that similar analysis presented in [43] resulted in different con-
clusion. I will discuss below the reason for this discrepancy.
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Here the plane waves have been ordered so that the time variable appear on the
right, and dµ is an appropriate measure on the space of three-momenta, whose
detailed form will be irrelevant to what follows. We assume that the plane
waves in the integral satisfy appropriate field equations so that ω is a given
function of k such that for the pair (k, ω(k)) the Casimir vanishes identically.
Let us assume that the integral in (47) has support on small neighborhood

ω0 −∆ω ≤ ω ≤ ω0 +∆ω
k0 −∆k ≤ k ≤ k0 +∆k

Factoring out the phases eik0x to the left and e−iω0t to the right one gets

Ψm
(ω0,k0)

(x, t) = eik0·x
[∫

ei∆k·xe−i∆ωtdµ

]

e−iω0t (48)

Now the integral in the middle carries the information about the group ve-
locity of the wave packet. Indeed it follows that the group velocity equals (in
deriving the expression above one should make use of the fact that in the limit
∆ω,∆k → 0, the commutator [e−i∆k·x, ei∆ωt] = 0)

v(g) = lim
∆k→0

∆ω

|∆k| =
dω

d|k| =
dE

d|P | . (49)

The expression (48) is, however, ambiguous because the middle, amplitude
term does not commute with the exponents on the left and on the right as a
result of the identity

eik·xe−iωt = e−iωtei e−ω/κ k·x

Thus instead of (48) we can use

Ψr
(ω0,k0)

(x, t) = eik0·x e−iω0t

[∫
ei e−ω/κ ∆k·xe−i∆ωtdµ

]

(50)

or

Ψ l
(ω0,k0)

(x, t) =
[∫

ei∆k·xe−i∆ωtdµ

]

eik0·x e−iω0t (51)

where in the last expression, we neglected the e−∆ω/κ term in the exponent
(it goes to zero in the relevant limit.)

We see therefore that the group velocity depends on the ordering of the
wave packet (48), (50), (51) and equals

v(g) =

{
dω
d|k| in the cases m, l
dω
d|k| e

−ω/κ in the case r
(52)

Using the fact that for massless particles ω and k are related by (see (19))
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κ2 cosh
ω

κ
− k2

2
eω/κ = κ2 . (53)

we find easily

v(g) =
{ κ

κ−|k| in the cases m, l
1 in the case r

(54)

Thus we see that the ordering ambiguity in the derivation leads to the ambi-
guity in the prediction of DSR1 concerning one of the few effects that might be
in principle observed. In particular, for one ordering we have velocity of mass-
less particles growing with the energy, while for other we have constant speed
of light, as in Special Relativity. The only way out, therefore, is to compute
the velocity in a different, though physically equally appealing framework.

To this aim let us try to compute the velocity starting from the phase
space of DSR theories. This computation has been presented in [45] (see also
[46] and [47].)

The idea is to start with the commutators (42)–(44). Note first that since
the for the variable η4, [Mi, η4] = [Ni, η4] = 0, κ η4 is a Casimir (cf. (45)) and
can be therefore naturally identified with the relativistic Hamiltonian H for
free particle in any DSR basis as it is by construction Lorentz-invariant, and
reduces to the standard relativistic particle hamiltonian in the large κ limit.
Indeed, using the fact that for Pµ small compared to κ, in any DSR theory
ηµ ∼ Pµ +O(1/κ) we have

κη4 = κ2

√

1 +
P 2

0 − P 2

κ2
∼ κ2 +

1
2
(
P 2

0 − P 2
)

+O
(

1
κ2

)

(55)

Then it follows from (43) that

ηµ = [xµ, κη4] = [xµ,H] ≡ ẋµ (56)

can be identified with four velocities uµ. The Lorentz transformations of four
velocities are then given by (44) and are identical with those of Special Rela-
tivity. Moreover, since

u2
0 − u 2 ≡ C =M2 (57)

by the standard argument the three velocity equals vi = ui/u0 and the speed
of massless particle equals 1. Let me stress here once again that this result is
DSR model independent, though, of course, the relation between three veloc-
ity of massive particles and energy they carry depends on a particular DSR
model one uses.

Exercise 12. Compute the velocity of massless particles for DSR1 directly.
Use κη4 as the hamiltonian and explicit expressions for ηµ as functions of
energy and momenta (45). (The answer can be found in [45].)

Thus this calculation indicates that GLAST should not see any signal of
energy dependent speed of light, at least if it is correct to think of photons
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as of point massless classical particles, as I have implicitly assumed in the
derivation above.

It should be stressed that the issue of velocity of physical particles is not
completely settled on the theoretical ground, and thus any experimental input
would be extremely valuable.

4.2 Remarks on Multi-Particle Systems

Having obtained the one-particle phase space of DSR it is natural to try to
generalize this result to find the two- and multi-particles phase spaces. It turns
out however that such a generalization is very difficult, and in spite of many
attempts not much about multi-particles kinematics is known. On the other
hand the control over particle scattering processes is of utmost relevance in the
analysis of seemingly one of the most important windows to quantum gravity
phenomenology, provided by Ultra High Energy Cosmic Rays and possible
violations of predictions of Special Relativity in UHECR physics (see e.g.,
[40, 41] for more detailed discussion and the list of relevant references.)

Ironically, we have in our disposal the mathematical structure that seem
to provide a tool to solve multi-particle the problem directly. This structure
is co-product. Recall that the co-product is a mapping from the algebra to
the tensor product

∆ : A → A⊗A (58)

and thus it provides the rule how the algebra acts on tensor products of its
representations. We know that in ordinary quantum mechanics two-particles
states are described as a tensor product of single-particle ones12. Note that
this is a very strong physical assumption: in making it we claim that any
two-particle system is nothing but two particles in a black box, i.e., that the
particles preserve their identities even in multi-particle states. But it is well
possible that multi-particle states differ qualitatively from the single-particle
ones, for example as a result of non-local interactions. Let us, however, assume
that in also DSR to obtain the multi-particle states one should only tensor
the single-particle ones, and let us try to proceed.

In the case of classical algebras the co-product is trivial:∆G = G⊗1+1⊗G
which means that the group action on two particle states just respects Leibnitz
rule. For example the total momentum of two particles in Special Relativity
is just the sum of their momenta:
12 In fact there is more to the description of multi-particles states than just the tensor

product, namely one should impose somehow the statistics by symmetrizing or
anti-symmetrizing the product. It is well known that in 4 dimensions these are
the only possibilities, but the proof relies heavily on the assumption of Poincaré
invariance. It is not known if relaxing this assumption by replacing the Poincaré
with κ-Poincaré invariance can result in some other, braided statistics.



154 J. Kowalski-Glikman

∆(Pµ) |1 + 2〉 = ∆(Pµ) |P (1)〉 ⊗ |P (2)〉
= (Pµ ⊗ 1l + 1l ⊗ Pµ) |P (1)〉 ⊗ |P (2)〉
=

(
P (1)

µ + P (2)
µ

)
|P (1)〉 ⊗ |P (2)〉 (59)

In the case of quantum algebras the co-product is non-trivial and non-
symmetric by definition (if the co-product was symmetric we would have to
do instead with just a classical Lie algebra in nonlinear disguise). This imme-
diately leads to the problem, as I will argue below.

Before turning to this problem let us point out yet another one, relevant
for DSR1 as well as for DSR2. Namely the co-product has been constructed so
that two-particle states transform as the single-particle ones (for example in
Special Relativity total momentum is Lorentz vector.) Indeed if we calculate
the total energy and momentum of two-particles system using the co-product
addition rule of DSR1 from

∆(P0) = 1l ⊗ P0 + P0 ⊗ 1l (60)

∆(Pk) = Pk ⊗ e−P0/κ + 1l ⊗ Pk (61)

we find
P 1+2

0 = P (1)
0 + P (2)

0 , P 1+2
k = P (1)

k e−P
(2)
0 /κ + P (2)

k . (62)

But then it follows that total momentum must satisfy the same mass shell
relation as the single particle does.

Exercise 13. Check that P 1+2
0 and P 1+2

k satisfy the dispersion relation of
DSR1 if P (1/2)

0 , P (1/2)
k do.

We know however that in the case of the DSR1 we have to do with maximal
momentum for particles, of order of Planck mass. While acceptable for Planck
scale elementary particles, this is certainly violated for macroscopic bodies.
To prove this, the reader can perform a nice quantum gravity phenomenology
experiment just by kicking a soccer ball! So we know that there is an experi-
mental proof that either our procedure of attributing momentum to composite
system by tensoring and applying co-product, or the bicrossproduct DSR, or
both are wrong.

To investigate things further let us turn to the DSR theory, which does not
suffer from the “soccer ball problem” namely to the classical basis DSR with
standard dispersion relation P2

0 − P2
i = m2, for which de Sitter coordinates

are given by (46). The co-product for this basis has been calculated in [21]
and up to the leading terms in 1/κ expansion read

∆(P0) = 1l ⊗ P0 + P0 ⊗ 1l +
1
κ
Pi ⊗ Pi + . . . (63)

∆(Pi) = 1l ⊗ Pi + Pi ⊗ 1l +
1
κ
P0 ⊗ Pi + . . . (64)
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Using this we see that according to the co-product addition rule the total
momentum of two-particles system is

P(1+2)
0 = P(1)

0 + P(2)
0 +

1
κ
P(1)

i P(2)
i (65)

P(1+2)
i = P(1)

i + P(2)
i +

1
κ
P(1)

0 P(2)
i (66)

As it stands, the formulas (65, 66) suffer from two problems: first of all,
recalling that Pµ transforms as a Lorentz vector for single particle, these
expressions look terribly non-covariant. Second, even though (65) is symmetric
in exchanging particles labels 1 ↔ 2, (66) is not. How do we know which
particle is first and which is second? Let us try to resolve these puzzles in
turn.

That the first puzzle is just an apparent paradox follows immediately from
the consistency of the quantum algebra. As I said above the action of boosts
on two-particle state is such that total momentum transforms exactly as the
single-particle momentum does. This is in fact the very reason of the “soccer
ball problem” in the DSR1. In fact the boosts do not only act on P(1)

µ and
P(2)

µ independently; they also mix them in a special way. This feature was
to be expected, since the co-product addition rule mixes single-particle states
in a non-trivial way. More specifically, note that boosts must act on two-
particle states by co-product as well, therefore in order to find out how a two-
particle state changes when we boost it we must compute the commutator
[∆(N),∆(P)]. Recall now that the co-product of boosts reads (again up to
the leading terms in 1/κ expansion)

∆(Ni) = 1l ⊗Ni +Ni ⊗ 1l − 1
κ
Ni ⊗ P0 − 1

κ
εijkMj ⊗ Pk (67)

Using this one easily checks explicitly that

[∆(Ni),∆(Pj)] = δij∆(P0), [∆(Ni),∆(P0)] = ∆(Pi) (68)

from which it follows that P(1+2)
0 and P(1+2)

i do transform covariantly, as
they should13. Of course equation (68) holds to all orders, as it just reflects
the defining property of the co-product.

Let us now turn to the second puzzle, the apparent dependence of the
total energy/momentum on physically arbitrary labelling of particles. Here I
have much less to say, as this paradox has not been yet solved. One should
however mention an interesting result obtained in the case of the analogous
problem in deformed, non-relativistic model. In the paper [48] the authors
find that even though there is an apparent asymmetry in particle labels due
to the asymmetry of the co-product, the representations with flipped labels
are related to the original ones by unitary transformation, and are therefore
13 This holds, of course, for a DSR theory in any basis, not just in the classical one.
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physically completely equivalent. In the similar spirit in [49] one uses the
fact of such an equivalence in 1+1 dimensions to demand that the action
of generators on two particles (bosonic) states is through symmetrized co-
product.

During this Winter School Aurelio Grillo and Fernando Mendez produced
another interesting puzzle concerning the validity of co-product based mo-
menta addition rule. This puzzle reminds somehow the entanglement problem
in quantum mechanics and it can be described as follows.

Suppose we use (62) to formulate conservation rule for two-to-two particles
scattering, which would therefore take the following form

P
(1)
0 + P (2)

0 = P (3)
0 + P (4)

0 (69)

P
(1)
k e−P

(2)
0 /κ + P (2)

k = P (1)
k e−P

(3)
0 /κ + P (4)

k . (70)

But what about all other particles in the Universe (spectators)? In principle,
their presence would contribute non-trivially to the conservation laws (69),
(70), to wit

P
(1)
0 + P (2)

0 + P (univ)
0 = P (3)

0 + P (4)
0 + P ′

0
(univ) (71)

(
P

(1)
k e−P

(2)
0 /κ + P (2)

k

)
e−P

(univ)
0 /κ + P (univ)

k

=
(
P

(1)
k e−P

(3)
0 /κ + P (4)

k

)
e−P ′

0
(univ)/κ + P ′

k
(univ) . (72)

In the standard, Special Relativistic case we neglect the influence of the rest
of the Universe, because we believe that the processes are (at least approxi-
mately) local, but here we have non-local influence of one particle on another
all the time, independently of their separation (in the formulas (71, 72) there
is no information concerning separation of particles in space and time.) Thus,
the final construction of DSR theory must necessarily solve this spectator
problem as well!

5 Conclusion

There is a growing hope that some form of DSR theory indeed describes
Nature in the kinematical regime, where the energies of the particles became
close to the Planck energy scale and at the same time one could neglect local
degrees of gravity, described by (still to be constructed) Quantum Theory of
Gravity. This hope is based on the analogy between the ground state of 4d
quantum gravity and 3d quantum gravity, both being described by topological
quantum field theory.

As we saw, we seem to know some of the ingredients of the DSR theory,
and we can even predict some (testable, in principle) DSR phenomenology. It
seems however that there would be very hard to derive the complete form of
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DSR just from the first principles, the hope being that soon we will be able
to derive DSR as an appropriate limit of (Loop) Quantum Gravity.

Four years ago during the Winter School entitled “Towards Quantum
Gravity” Giovanni Amelino-Camelia asked the insightful question “Are we
at the dawn of Quantum Gravity Phenomenology?”. This year we devoted
the whole Winter School to discuss possible observable signals of Quantum
Gravity. I hope that in four years we will meet to discuss numbers coming
from Quantum Gravity experiments that would be already running and pro-
ducing data. I also hope that it will turn out that these data would agree with
the final form of Doubly Special Relativity.
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The wide range of applications of atomic interferometry and of laser interfer-
ometry in the search for quantum gravity induced effects is presented. These
effects consists of the exploration of relativistic gravity theories, tests of the
Einstein Equivalence principle, of searches for quantum gravity induced devi-
ations of the ordinary dispersion relation and of the search for fundamental
fluctuations.

1 Introduction

In the quantum domain, interferometry is a very basic and universal tool.
First, it is the very characteristic feature of quantum properties of matter [1].
It can be used for the study of properties of quantum states as well as for the
exploration of fields interacting with quantum states. With interferometry the
superposition principle underlying the formalism of quantum theory as well
as notions like entanglement has been verified. Furthermore, applying inter-
ferometry the interaction with external fields like gravitational, inertial and
electromagnetic fields can be explored. In many cases the accuracy of these
quantum measurements are better than the corresponding classical measure-
ments. Also new types of interactions which are not present in classical physics
like the non-local Aharonov–Bohm like effects are accessible with interferom-
etry. Being such a powerful scheme, interferometry also plays an important
role in the search for deviations from standard physics given by Special and
General Relativity and the Standard Model of particle physics. In fact, the
modern precise tests of Special Relativity, namely the tests of the isotropy and
constancy of the speed of light, are carried through with interferometric set-
ups, the most precise clocks are atomic clocks based on atomic interferometry,
and very precise tests of the Universality of Free Fall (the weak equivalence
principle) can also be performed with atomic interferometry. Therefore, with
interferometry all interactions and basic principles of physics can be tested
and explored.
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With interferometry also the classically appearing forces can be explored.
On the quantum level, forces appear as potentials. If the splitting is in the
configuration space, then the result compares the potentials at two differ-
ent positions. In the limit of infinitesimal splitting this then gives directly
the force. Therefore, interferometry gives results which can be obtained by
classical devices but is, as alredy noted, more powerful in exploring further
properties of interactions.

Here we give a list of all the interferometric tests

1. tests of principles of quantum mechanics
(a) superposition principle
(b) 2π–rotation of spinors
(c) which–path information
(d) delayed–choice experiments
(e) decoherence

2. tests exploring interactions
(a) measurement of gravitational acceleration
(b) measurement of the gravity gradient
(c) measurement of inertial acceleration
(d) measurement of rotation (Sagnac effect)
(e) measurement of the electromagnetic interaction
(f) Aharonov–Bohm effect
(g) Aharonov–Casher effect
(h) measurement of Berry phase

3. tests exploring the strucure of physics
(a) Michelson–Morley tests
(b) Kennedy–Thorndike tests
(c) search for anomalous spin interaction
(d) test of the Universality of Free Fall
(e) tests of the Universality of the Gravitational Redshift

Technical applications are

1. gyroscopes (based either on laser or atomic interferometry – laser gyro-
scopes are commercially available, atomic gyroscopes are still laboratory
devices)

2. accelerometers (based on atomic interferometry – laboratory device)
3. gravity gradiometers (based on atomic interferometry – laboratory device)
4. material sciences

Since interferometry is a very sensitive tool for the exploration of interac-
tions and the structure of quantum mechanics it can be used for the search of
quantum gravity effects. Since the typical laboratory energies are of the order
of 1 eV and the quantum gravity energy scale is assumed to be of the order
of the Planck energy which is about 1028 eV, the quantum gravity effects in
laboratory experiments are likely to be of the order of 10−28 which looks very
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unlikely to be accessible in laboratory experiments. However, there are several
reasons for nevertheless pursuing this way:

– Since there is no finally worked out theory of quantum gravity available, all
statements regarding the quantum gravity energy scale of 1028 eV have the
status of a hypothesis only. Nobody knows about the “true” energy scale
of the final quantum gravity theory.

– As constantly emphasized by G. Amelino–Camelia, there are sometimes
mechanisms at work which magnify the quantum gravity induced
effects through some multipliers. This happens, e.g., for proposals for de-
viations from Newton’s law at small distances where the mechanism which
enhances the effect results from the assumption of higher dimensions which
introduces additional constants, see e.g. [2]. Another example is the effect
of quantum gravity induced fluctuations in interferometers. In very general
models of such fluctuations, the magnitude of these fluctuations increase
for small frequencies, that is, for long measurement times (1/f–noise) [3].
Therefore, searching for fundamental noises in high precision long-term sta-
ble devices (like optical resonators) may give new access to this domain
of quantum gravity effects [4]. Further examples are the predictions from
quantum gravity induced dilaton scenarios [5, 6] that the Universality of
Free Fall might be violated already at the 10−13 level and that the PPN
parameter γ which in ordinary Einsteinian gravity is exactly 1 might be
different from unity by up to 10−5 – predictions which are of considerably
larger order than the first guess of 10−28.

– Using very high precision devices it might be possible even in laboratory
experiments to achieve a sensitivity which approaches, at least in principle,
the 10−28 range. Such devices are gravitational wave interferometers, for
example.

Therefore, it is mandatory that for the search of quantum gravity induced
effects all kinds of experimental tests should be considered and constantly tried
to be improved.

2 The Importance of Interferometry

The interference of photons and electrons, neutrons and other particles is a
very strange effect which possesses no classical counterpart [1]. It is a statis-
tical effect where the particles are correlated with each other. The main part
of the experimental setup consists of a wall with two slits and a photographic
plate behind that wall which registeres each particle hiting that plate. Parti-
cles like photons, electrons, neutrons, etc. can be sent through the double-slit
setup. For one single particle there is no way to predict the position of the
particle hiting the screen.

There are two ways to obtain these interference fringes: (i) Particles will
be sent one after another through this setup in a way that every particle
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reaches the screen before the next particle is launched. In an extreme case we
may have one particle each day. Then, after many days, an interference pat-
tern builds up, see Fig. 1. One consequence of this is, that all the particles in
some sense “know” about each other. They show a correlation which cannot
be understood in classical terms because there is always one particle only in
the interferometer. In the limit of an infinite number of particles one gets the
ideal interfernce pattern. (ii) In a second setup one may have thousands of
identical interferometers which may be distributed around the world, on the
Moon, on the Mars etc. Through any of these interferometers only one par-
ticle will be sent. After that, all the positions of the particles on the various
screens will be collected. What comes out is an interference pattern as before.
As a consequence, in classical terms again all particles must know something
from the other particles: The particle on the Moon somehow knows the posi-
tion of the other particles on their screens. Again, for an infinite number of
interferometers the ideal interference pattern comes out.

Fig. 1. Evolving interference fringes. Even though particles (photons, electrons, neu-
trons, etc.) traverse the double slit setup one after another, an interference patters
evolves in time
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One way to interpret and to describe these results is to accept that only
the interference pattern has physical significance and, thus, is accessible to a
deterministic description, and that the interference pattern somehow maps out
the geometry of the whole setup. If only the interference pattern is assumed
to have physical reality, then this can be related to the propagation of waves.
The superposition of waves very easily leads to an interference pattern. In
fact, assuming states of the form ψ±(x) =

√
I0

|x±d/2|e
−ik|x±d/2|, where I0 and k

are the intensity and wave vector of this wave and d the separation between
the two slits, then we get, for large distances compared to the separation of
the slits x� d and for small z � x, the interference pattern

I(x) = |ψ+(x) + ψ−(x)|2 = I0

(

1 + cos
(

k
d

x
z

))

(1)

on the screen. The cosine is characteristic for the interference. The more com-
plicated exact result which is also valid for larger z and d leads to the function
plotted in Fig. 1.

The notion of interferometry is not only restricted to the physical setup
with the double slit described above where the interference pattern is related
to the spatial position. It extends to any parameter the physical state can
be characterized with: to spin, energy (frequency), momentum, or any other
internal quantum number, see Fig. 2. Accordingly, we start with a quantum
state ψ(a1, t0) characterized by the parameter a1. This state evolves in time:
ψ(a1, t) = U(t, t0)ψ(a1, t0) where U(t, t0) is the evolution operator. At t = t1
the state will be split in a coherent way into two states with respect to the
parameter a:

ψ(a1, t1) → ψ(t+1 ) = U (1)
a ψ(a1, t1) = α(1)ψ(a1, t1) + β(1)ψ(a2, t2) , (2)

Fig. 2. Interferometry: A splitting of a qantum state with respect to any parameter
characterizing this quantum state and subsequent “free” evolution followed by a re-
combination (superposition) of the splitted states. The measurement of the intensity
(probablility) of the outgoing states (port I or port II) shows an interference pattern
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where t+1 = t1 + δt with δt the time the beam splitting process needs. Proba-
bility conservation requires |α(1)|2 + |β(1)|2 = 1. For a 50:50 splitting we have
|α(1)| = |β(1)| = 1/

√
2. Therefore, up to an overall phase,

ψ(t+1 ) =
1√
2

(
ψ(a1, t1) − e−iϕ1ψ(a2, t1)

)
, (3)

with some phase ϕ1. This superposition of states again evolves and gives

ψ(t) = U(t, t+1 )ψ(t+t )

= α(1)U1(t, t+1 )ψ(a1, t+1 ) + β(1)U2(t, t+1 )ψ(a2, t+1 )

= α(1)ψ(a1, t) + β(1)ψ(a2, t) . (4)

Here we assume that the evolution governed by U(t, t0) (called “free” evo-
lution) does not mix the states with different quantum numbers a but, in
general, may depend on the states.

Since only states with the same quantum characteristics can superpose
one has to apply again a beam splitter (now called recombiner) which brings
ψ(a1, t2) into the ψ(a2, t2) state and vice versa:

ψ(a1, t2) → ψ1(t+2 ) = U (2)
a ψ(a1, t2) = α(2)ψ(a1, t2) + β(2)ψ(a2, t2) (5)

ψ(a2, t2) → ψ2(t+2 ) = U (2)
a ψ(a2, t2) = γ(2)ψ(a1, t2) + δ(2)ψ(a2, t2) . (6)

Conservation of the overall probability requires U+
a Ua = 1 which gives |α(2)|2+

|γ(2)|2 = 1, |β(2)|2 + |δ(2)|2 = 1, (α(2))∗β(2) − (γ(2))∗δ(2) = 0 and, thus,
|δ(2)| = |α(2)| and |β(2)| = |γ(2)|. Again we assume a 50:50 splitter which,
if a state with a definite quantum number a1 or a2 comes in, distributes
this states with equal probability onto the two states. Then α(2) = eiϕα/

√
2,

γ(2) = eiϕβ/
√

2, γ(2) = eiϕγ/
√

2, and δ(2) = eiϕδ/
√

2. This leads, up to overall
phase factors, to

U (2)
a ψ(a1, t2) =

1√
2

(
ψ(a1, t2) + eiϕ2ψ(a2, t2)

)
(7)

U (2)
a ψ(a2, t2) =

1√
2

(−e−iϕ2ψ(a1, t2) + ψ(a2, t2)
)
. (8)

In matrix form this means

ψ(t+2 ) = U (2)
a ψ(t2) , (9)

where the 2 × 2-matrix

U (2)
a =

1√
2

(
1 eiϕ2

−e−iϕ2 1

)

(10)

acts on the two-level state
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ψ(t2) =
(
ψ(a1, t2)
ψ(a2, t2)

)

. (11)

Also the first beam splitting can be expressed as ψ(t+1 ) = U (1)
a ψ(t1) with U (1)

a

given by (10) with the ϕ2 replaced by ϕ1. It is interesting, and also of practical
importance, that the subsequent use of two beam splitters described by (10)
gives an inversion of the quantum states:

U (2)
a U (2)

a =
(

0 eiϕ2

e−iϕ2 0

)

. (12)

Such a transformation can be interpreted as “mirror”.
Putting everything together, we have

ψ(t+2 ) = U (2)
a U(t2, t+1 )U (1)

a ψ(t1) , (13)

where

U(t2, t+1 ) =
(
U1(t2, t+1 ) 0

0 U2(t2, t+1 )

)

. (14)

In our approach we have chosen ψ(t1) =
(
ψ(a1, t1)

0

)

which can be generalized

to any ingoing state. In interference experiments the intensity of the outgoing
state corresponding to a1 or a2 is being measured, that is, |ψ(a1, t2)|2 or
|ψ(a2, t2)|2. A calculation gives

|ψ(a1, t2)|2 = 2|ψ(a1, t1)|2
(

1 − Re
ψ∗(a1, t1)eiδϕU−1

1 U2ψ(a1, t1)
|ψ(a1, t1)|2

)

(15)

|ψ(a2, t2)|2 = 2|ψ(a1, t1)|2
(

1 + Re
ψ∗(a1, t1)eiδϕU−1

1 U2ψ(a1, t1)
|ψ(a1, t1)|2

)

, (16)

with δϕ = ϕ2 − ϕ1. The real part on the right hand side is always smaller
than 1 so that it can be represented as a cosine:

|ψ(a1, t2)|2 = 2|ψ(a1, t1)|2 (1 − cosϑ) (17)
|ψ(a2, t2)|2 = 2|ψ(a1, t1)|2 (1 + cosϑ) (18)

with cosϑ = Re
(
ψ∗(a1, t1)eiδϕU−1

1 U2ψ(a1, t1)
)
/|ψ(a1, t1)|2. In the case that

the relative evolution U−1
1 U2 gives a pure phase shift, U−1

1 U2ψ(a1, t1) =
eiξ(t2−t+1 )ψ(a1, t1), then we have ϑ = δϕ+ ξ(t2 − t+1 ).

This scheme also extends to the case of stationary waves propagating in
position space. Then, t has to be replaced by x and the beam splitting can be
described as scattering process of waves at periodic potential walls, see [7].

In any case, the beam splitter relies on a certain interaction of the wave
with some external field. In modern atomic interferometers, for example, the
beam splitting is a consequence of the interaction of a laser beam with the
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atomic beam. In neutron interferometry, the beam splitting is a consequence
of the interaction of the neutron wave with the periodic potential of the silicon
crystal. By changing of the interaction time of the atoms with the lasers or
by changing the laser beam intensity, one can manipulate the properties of
the beam splitters. For a certain intensity or duration of the interaction one
may get, for example, not only a 50:50 splitting of the incoming atomic beam
but, instead, a complete transformation in the other state. This then plays
the role of an atomic mirror.

All kinds of interferometers with 50:50 beam splitters are special cases of
the above general treatment. We will specify this general formalism to the
case of atom interferometry for exploring gravito–inertial interactions as well
as to interferometry with light for tests of Special and General Relativity.

3 Atomic Interferometry

Atomic interferometry has been first realized by Carnal and Mlynek in 1991
using a Young double slit setup [8]. Modern setups use laser cooled atoms and
laser beams as beam splitters [9]. With these latter techniques atom interfer-
ometers are a very precise tools for exploring the gravito–inertial interactions,
for making precise tests of foundations of quantum mechanics. They also en-
abled the most precise determination of the fine structure constant [10]. These
devices find applications as accelerometers [11, 12, 13], gyroscopes [14, 15] and
gravity gradiometers [16]. Recent studies show that with atomic interferome-
try it also should be possible to map the gravitomagnetic field of the Earth
in an orbiting satellite [17].

3.1 The Beam Splitter

In atomic interferometry the beam splitting is accomplished by the atom–
laser interaction. The corresponding dipole–interaction yields that photons
can transmit momenta to the atoms in units of �k, where k is the wave vector
of the laser beam [18]. That means that for an incoming atomic beam with
momentum p the interaction with a laser beam gives atoms with momenta
p+n�k, where n is an integer. It can be shown that for appropriately chosen
laser frequencies the possible atomic states effectively reduce to a two-level
system which is characterized by the two momenta p and p+ �k. The atomic
beam splitter therefore acts in momentum space and can be described by
means of the matrix [12]

(Uπ/2a)(t1+) =
1√
2

(
1 −ieiδ0eiδ(p)(t1−t0)

−ie−iδ0e−iδ(p)(t1−t0) 1

)

a(t0) . (19)

The corresponding laser pulse is called a π/2-pulse. The laser pulse which has
double duration or is twice as intensive acts as mirror
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(Uπa)(t1+) =
(

0 −ieiδ0eiδ(p)(t1−t0)

−ie−iδ0e−iδ(p)(t1−t0) 0

)

a(t0) (20)

and is called a π-pulse. With these atom-optical elements we can describe
atom interferometric experiments.

3.2 Interaction with the Gravitational Field

We discuss the interaction with a homogeneous gravitational field, or, equiv-
alently, with the acceleration of the interferometer. This is described by the
Schrödinger equation describing the “free” evolution between the beam split-
ters

H =
1

2m
p2 −mg · x . (21)

Here m is the mass of the atoms and g the gravitational acceleration. This
operator does not induce any transitions between the upper and the lower
atomic levels. The corresponding evolution operator can be given in closed
form [19]

U(t, t0) = e−
i
�

(
ωatom− p2

2m

)
(t−t0)e

i
�

ξ(t)·pe−
i
�

.ξ̇·xe
− i

�

∫ t
(

m
2 ξ̇(t′)

2
+g·ξ

)
dt′ (22)

with ξ̈ = g. We calculate the phase shift for the Kasevich–Chu-setup using
a sequence of π/2–, π, and π/2-laser pulses as beam splitter, mirror and
recombiner. For simplicity, we do not take into account any modification of
the beam splitting process due to the gravitational field (see [20, 21]). One
obtains the phase shift [12, 22]

δφ = k · g T 2 . (23)

where T is the time between two laser pulses.
This phase shift does not depend on the mass of the atoms. In the case

of uniform gravitational acceleration the observable phase shift for quantum
matter which evolution is governed by the usual Schrödinger equation, exactly
fulfills the weak equivalence principle (EP) [23]. This is remarkable because
the solutions of the Schrödinger equation in a homogeneous gravitational field
depend on the mass [24]. Consequently, a mass dependence of the solutions
does not imply that observables depend on the mass and therefore does not
indicate a break-down of the Weak Equivalence Principle.

Therefore this kind of experiment can be used to test the Weak Equiva-
lence Principle in the quantum domain. If one introduces an inertial mass mi

and a gravitational mass mg in the kinetic and the gravitational part of the
Schrödinger equation then one obtains the modified phase shift

δφ = −mg

mi
δg · k T 2 . (24)
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Thus, with different kinds of atoms one can perform direct tests of the
equivalence principle. With the accuracy of the Kasevich–Chu interferom-
eter [13] a null-result will verify the EP in the sense of the Eötvös–ratio
η = (mg/mi)

(a) − (mg/mi)
(b) with the accuracy1 |η| ≤ 10−9 (here (a) and

(b) indicate the two different kinds of atoms). This kind of experiment will be
a genuine quantum mechanical test of the weak EP. In the derivation of (23)
and (24) no approximations have been used.

One also can turn the line reasoning the other way around: If one assumes
an interaction of the atom with a potential V (x) which structure is undeter-
mined and requires the validity of the Equivalence Principle for the resulting
phase shift then one can show [26] that the potential must be of the form
mU(x) where U(x) is a function which does not depend on the mass m of
the quantum object (m is the mass from the kinetic term in the Schrödinger
equation). This kind of reasoning also applies to vectorial and tensorial in-
teractions. Therefore, in the same way as for point particles, the Equivalence
Principle makes it possible to determine the structure of the gravitational
interaction with quantum matter and, even more important, to assign the
gravitational interaction also in the quantum domain a geometrical structure
which is independent of the quantum matter under consideration.

Another striking feature of (23) is the fact that, though it is an exact
quantum result, it does not depend on Planck’s constant �. This is because the
wave vector k and the interaction time T are given by the experimentator, δφ
is the measured quantity, and g the quantity calculated from the experimental
input and the measured quantity. There is no room for having an �. Only by
introducing formally the classical notions “length” l = v0T where v0 = 〈v̂〉0 is
the mean value of the velocity of the atomic beam at the first beam splitter,
and “height” h = �kT/m we can reformulate the phase shift (23) so that
it acquires the well known ordinary COW–form δφ = mghl/(�v0). However,
this is purely formal, because there is neither an operational separation of
the atomic beams and, thus, no operational realization of the “height” of the
interferometer. The only experimentally given quantities are the wave vector
of the laser beams and the time between the laser pulses.

In the same way, for neutron interferometry the gravitationally induced
phase shift can be recovered in the form δφ = G · g T 2 where only the recip-
rocal lattice vector G and the time of flight T are the relevant experimental
quantities [23]. This result also shows that for neutron interferometry in a
uniform gravitational field the weak equivalence principle holds, too.

3.3 Rotation – The Sagnac Effect

The Sagnac effect originally describes the influence of the rotation of the
interferometer on the interference pattern of light. It was first predicted by
Sagnac and first observed by Michelson and Gale [27]. The fact that a rotating

1 For bulk matter the accuracy is presently 5 × 10−13, see [25].
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interferometer also effects the phase shift of matter waves was first predicted
by Heer [28] (see also Page [29, 30]) and has been confirmed by interference
experiments for neutrons [31, 32], electrons [33, 34, 35] and atoms [9].

For spinless matter the corresponding Hamiltonian attached to the rotat-
ing interferometer is given by

H =
p2

2m
− Ω · (x × p) (25)

where Ω is the angular velocity of the interferometer. The phase shift results
from the solution of this Schrödinger equation given by

UI(t, t0) = exp
(

− i
�

p2

2m
(t− t0)

)

exp
(
i

�
Ω · (x × p)(t− t0)

)

(26)

which successively interacts with a sequence of π/2–, π–, and π/2-pulses. The
corresponding phase shift is called the Sagnac-effect. To first order in the
rotation Ω it turns out to be

δφ = 2T 2k · (〈v〉0 × Ω) (27)

where 〈v〉0 denotes the expectation value of the atomic velocity at the position
of the first beam splitter. Because of the large energy due to the rest mass of
the atoms this effect is larger than the corresponding effect for light with a
scaling factor mc2/hν. As already discussed in connection for the acceleration
induces phase shift, in (27) there appears neither m nor �. Again, with the
introduction of classical notions “height” and “length” the above phase shift
acquires the well-known form of the Sagnac effect

δφ = 2
m

�
Ω · A . (28)

The Sagnac effect is also the basis of the Schiff effect [17, 18].
In [14] the measurement of the Sagnac effect induced by the Earth’s ro-

tation with atom beam interferometry has been reported. They arrived a
sensitivity to rotations of 2 · 10−8 rad sec−1/

√
Hz.

3.4 Coupling to the Gravity Gradient

We can expand the interaction with the Newtonian potential to the second
order in the position:

U(x) = U(x0) + x · ∇U(x0) +
1
2
rirj∂i∂jU(x0) (29)

with r = x−x0 where x0 is the expectation value of the position of the atomic
beam at time t0. The second term is the uniform gravitational acceleration
described above and the third term can be interpreted as Newtonian part of
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the Riemannian space-time curvature tensor. Consequently, the influence of
the largest part of the Riemannian space-time curvature on quantum matter
is in lowest order given by the interaction term HI = − 1

2r
irj∂i∂jU . This inter-

action corresponds to a particle in an three-dimensional anisotropic oscillator
potential. This case can again be treated in an exact manner. Generalizing
the procedure in [19] we get as solution for the time-evolution operator

U(t, t0) = exp
(

− i
�
λijrir

j

)

exp
(

− i
�
µijpipj

)

× exp
(

− i
�
νi

j(pir
j + rjpi)

)

(30)

where the functions λij(t), µij(t), and νi
j(t) are solutions of

d

dt
λij(t) = 2

1
m
λl

i(t)λlj(t) − 1
2
∂i∂jU (31)

d

dt
µij(t) =

δij

2m
+ 2

�

m2
µik(t)λj

k(t) (32)

νi
j(t) =

∫ t

t0

λi
j(t

′)dt′ (33)

with the initial conditions λij(t0) = 0 and µij(t0) = 0 which can be derived
from the initial condition U(t0, t0) = 1. For the geometry of the atom beam
interferometer of Kasevich and Chu we get as phase shift to lowest order in
the curvature

δφ = −kiT 2

(

gi − UijT

(
�kj

2m
+ 〈v̂j〉0 − gj 37

12
T

))

. (34)

This phase shift has also been discussed in [36], where it has been shown
that it may be possible to measure this phase shift for a space-time curvature
which is created by masses aligned in the laboratory. Since the curvature is
proportional to the matter density masses in the laboratory are better suited
for that purpose than the Earth.

The phase shift (34) is the quantum analogue of the geodesic deviation. In
the same manner as in classical mechanics (where one calculates the relative
acceleration of two freely falling point particles, see e.g. [37]) it describes the
relative motion of two “parts” of a quantum system which are subject to a
gravitational field corresponding to a curved space-time.

It is of importance for the formalism of quantum mechanics in curved
space-time to realize experimentally this effects. This would be for the first
time a test of a single quantum system with the (Newtonian parts of the)
curvature of space-time. Since the corresponding phase shift is not the result
of a transport along a closed path but instead an effect which results from an
overall defined quantum field, it is a pure curvature effect. In addition, this
would constitute a measurement of the space-time curvature on a very small
scale (∼1 cm−3) which is not possible using classical methods.
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3.5 Tests of Relativistic Gravity

Relativistic Approximation of the Klein–Gordon Equation

We derive a Hamilton operator for a spinless quantum field within the PPN
framework [38] which is a test theory for a very broad class of gravitational
theories. Within this formalism the space-time metric depends on the matter
in the universe according to the gravitational theory under consideration.
The matter in the universe is given by its rest mass, its currents, pressure, et.
Therefore, each gravitational theory is characterized by some set of parameters
which describe the coupling of the metric to the various components of the
matter. Consequently, any equation which depends on the metric as, e.g., the
Klein–Gordon or Dirac equation depends on these parameters. Comparison of
the outcome of experiments with the theoretical description within this general
PPN framework will give information about the PPN parameters. We first
perform a relativistic approximation of the minimally coupled Klein–Gordon
equation in an arbitrary gravitational field [39], where gravity is described
in a PPN approximation which is consistent with the approximation scheme
employed.

The Klein–Gordon equation minimally coupled to gravity is (µ, ν =
0, . . . , 3)

0 = gµν
�

2DµDνϕKG −m2c2ϕKG . (35)

We insert the PPN metric [38] into (35) and make the ansatz [40]

ϕKG(x, t) = exp
(
c2S0(x, t) + S1(x, t) + c−2S2(x, t) + . . .

)
(36)

and compare powers of the expansion parameter c2. The lowest order term is
∂iS0 = 0 implying that S0 is a function of t only. The next order

(
∂S0
∂t

)2−m2 =
0 has the solutions S0 = ±mt from which we choose S0 = −mt. The next
order gives after the substitution ϕ1 := exp

(
i
�
S1

)
the Schrödinger equation

for ϕ1 coupled to the Newtonian potential

i�
∂ϕ1

∂t
=

p2

2m
ϕ1 −mU(x)ϕ1 . (37)

The next order is an equation for S1 and S2. Replacing S1 by ϕ1 by
means of the above substitution and introducing a new wave function ϕ :=

ϕ1 exp
(
iS2

�c2

)

gives the relativistic correction of order c−2

H =
p2

2m
− p4

8m3c2
−mU − (2γ + 1)

U

c2
p2

2m
−

(
1
2
− β

)
mU2

c2

−3iγ�∂tU

2c2
− i�δij

2c2m
γ∂iUpj − �

2∇2U

4c2m
+Hgrav−magn +HΦ +Hα , (38)
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where

Hgrav−magn :=
7
4
∆1

c2
{V i, pi} +

1
4
∆2

c2
{W i, pi} (39)

HΦ := −
(
ζ1
2

− ξ
)
m

c2
A +

(

1 +
α3

2
+ γ − ξ +

ζ1
2

)
m

c2
Φ1

+ (1 − 2β + 3γ + ξ + ζ2)
m

c2
Φ2 + (1 + ζ3)

m

c2
Φ3

+ (3γ − 2ξ + 3ζ4)
m

c2
Φ4 − ξm

c2
ΦW (40)

Hα := −(α2 + α3 − α1)
mw2U

2c2
− (2α3 − α1)

mwiVi

2c2

+α2
mwiwjUij

2c2
+
α1 − 2α2

4c2
wi{U, p̂i} +

α2

2c2
wi{Uji, pj} . (41)

Hgrav−magn describes gravitomagnetic effects and Hα are preferred frame con-
tributions. All external fields U , U ij , V i, W i, Φ, etc. in general depend on
the position x and time t and are fixed by the boundary condition that they
vanish at spatial infinity. In the following all statements are valid in our order
of approximation only.

The scalar product which is necessary for a quantum interpretation of our
dynamical equation (38) can be obtained from the relativistic approximation
of the conserved quantity const =

∫
jµnµd

3V with jµ = gµν(Dνϕ
∗
KGϕKG−

ϕ∗
KGDνϕKG where (·)∗ denotes complex conjugation. Here nµ is a normalized

time-like 1-form: gµνnµnν = −1 and d3V =
√

(3)gd3x is the invariant 3-
volume in the t = const hypersurface. If we align nµ ∼ δ0µ we have nµ =
√
−g00δ0µ. Inserting the Klein–Gordon wave function ϕKG = e−i mc2

�
tϕ yields

j0 = ϕ∗ϕ+
1

2mc2
((Hϕ)∗ϕ+ ϕ∗(Hϕ)) (42)

where we normalized the wave function in such a manner that the leading
non-relativistic term acquires the form of the Schrödinger probability density.
Terms containing g0µ̂ drop out.

Using this conserved quantity we define the scalar product

〈ψ | ϕ〉 =
∫ [

ψ∗ϕ

(

1 − U

c2

)

+ ψ∗ p2

2m2c2
ϕ

] √
(3)g√−g00 d

3x

=
∫ [
ψ∗ϕ+ ψ∗p22m2c2ϕ

]√
(3)gd3x . (43)

The norm is defined by 〈ϕ | ϕ〉. The scalar product and, thus, the norm is
conserved in our order of approximation. Since p2 is a positive operator, the
norm 〈ϕ | ϕ〉 is positive definite. The expectation value of an operator O is
defined as 〈ϕ | O | ϕ〉. As usual, O is hermitian if 〈Oψ | ϕ〉 − 〈ψ | Oϕ〉 = 0 for
all ψ and ϕ. The Hamiltonian H (38) is hermitian with respect to (43) if and
only if ∂tU = 0 what can also be stated as ∂t

√
(3)g = 0.
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It is convenient [41, 42] to transform the wave functions and the Hamil-
tonian H to a “flat Schrödinger” scalar product. In a first step we absorb the
3-volume element into the wave functions and operators by defining “flat”
wave functions, scalar product, operators and the Hamiltonian by means of

ϕ→ ϕf = ((3)g)
1
4ϕ (44)

O → Of = ((3)g)
1
4O((3)g)−

1
4 (45)

so that

〈ψ | ϕ〉 =
∫ [

ψ∗
f ϕf + ψ∗

f

p2

2m2c2
ϕf

]

d3x (46)

Hf = ((3)g)
1
4H((3)g)−

1
4 + i�

∂

∂t
((3)g)−

1
4

=
p2

2m
− p4

8m3c2
−mU − (2γ + 1)

U

c2
p2

2m
−

(
1
2
− β

)
mU2

c2

+
i�

c2m
γδij∇iUpj − (1 − 3γ)

�
2∇2U

4c2m
+HL-T +HΦ +Hα (47)

The time derivative of the Newtonian potential dropped out. The total proba-
bility as well as the expectation values are not affected by this transformation.

In the second step we perform a non-local transformation

ψf → ψf,S :=
(

1 +
p2

m2c2

) 1
4

ψf (48)

Of → Of,S =
(

1 +
p2

m2c2

) 1
4

Of

(

1 +
p2

m2c2

)− 1
4

(49)

so that

〈ψ | ϕ〉 =
∫
ψ∗

f,Sϕf,Sd
3x (50)

Hf,S =
(

1 +
p2

m2c2

) 1
4

Hf

(

1 +
p2

m2c2

)− 1
4

−i�
(

1 +
p2

4m2c2

)

∂t

(

1 − p2

4m2c2

)

=
p2

2m
− p4

8m3c2
−mU + (2γ + 1)

1
2mc2

(−Up2 + i�δij∂iUpj

)

−
(

1
2
− β

)
mU2

c2
+ 3γ

�
2∇2U

4c2m
+Hgrav−magn +HΦ +Hα . (51)

The Hamiltonian Hf,S is manifest hermitian. This means that by choosing the
flat scalar product in the Schrödinger form automatically gives a Hamiltonian
which is hermitian. This means in particular that even for the treatment of
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relativistic corrections the usual interpretation and handling according to the
non-relativistic Schrödinger equation is possible. Therefore this representation
of the Hamiltonian is most preferable for the following discussions2

The general structure of the part of the Hamiltonian (51) describing the
interaction with the gravitational field is

Hgrav
int = Ψab(x)papb + Ψa(x)pa + Ψ(x) (52)

where the coefficients Ψab(x), Ψa(x), and Ψ(x) can be read off from (51).
We expand the gravitational field with respect to a certain reference point
x0 which we take to be the position of the beam splitter. Neglecting terms
containing the second derivative combined with c−2 we have

Ψ(x) = Ψ + Ψax̂
a + Ψabx̂

ax̂b (53)
Ψa(x) = Ψa + Ψa

b x̂
b (54)

Ψab(x) = Ψab + Ψab
c x̂

c (55)

with x̂a = xa − xa
0 and Ψa = ∂aΨ(x0), Ψab = ∂a∂bΨ(x0), Ψa = Ψa(x0), etc.

Then the Hamiltonian is

Hc.m. = H0(p) + Ψ + Ψax
a + Ψabx

axb + Ψapa

+Ψa
b x

bpa + Ψabpapb + Ψab
c x

cpapb (56)

with H0(p) = p2

2m − p4

8m3c2 and

Ψ = −mU −
(

1
2
− β

)

mU
U

c2
− (α2 + α3 − α1)

mw2U

2c2

−(2α3 − α1)
mwiVi

2c2
ϕ2 + α2

mwiwjUij

2c2
− 1

2
i�Ψa

a +HΦ (57)

Ψa = −m∂aU − 2 (1 − β)m∂aU
U

c2
+ ∂aHΦ − (α2 + α3 − α1)

mw2∂aU

2c2

−(2α3 − α1)
mwi∂aVi

2c2
ϕ2 + α2

mwiwj∂aUij

2c2
(58)

2 In the “flat Schrödinger” representation it is also convenient to take xi as position
operator. Transforming this operator back to the “curved” representation one

gets the non-local position operator x̂i = xi + �
2

2m2c2
δij∇j which is hermitian

with respect to the “curved” scalar product (43). This position operator gives us
the possibility to define a center-of-mass x0 of the matter field representing the
coordinate position of the atom xi

0 := 〈ϕ | xi | ϕ〉 =
∫

ϕ∗
f,Sxiϕf,Sd3x.
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Ψab = −m∂a∂bU (59)

Ψa =
7
2
∆1

c2
V a +

1
2
∆2

c2
W a +

α1 − 2α2

2c2
Uwa + α2

Ua
b

c2
wb − i�Ψab

b (60)

Ψa
b =

7
2
∆1

c2
∂bV

a +
1
2
∆2

c2
∂bW

a +
α1 − 2α2

2c2
∂bUw

a + α2
∂bU

a
c

c2
wc (61)

Ψab = −2γ
U

2mc2
δab (62)

Ψab
c = −(1 + 2γ)

∂cU

2mc2
δab , (63)

where all gravitational fields are evaluated at the position of the beam splitter.

The Solution

Now we solve the equation of motion for vanishing laser beam. Then we have
for our 2-level system the equations (r = 1, 2 and p(1) = p, p(2) = p+ �k)

d

dt
ar,p(r) = − i

�

(

Ξ(p(r), t, t0)ar,p(r) + i�Ξa(p(r), t, t0)
∂

∂pa
ar,p(r)

−�
2Ξab(p(r))

∂2

∂pa∂pb
ar,p(r)

)

, (64)

with

Ξ(p, t, t0) = Ψ + Ψapa + Ψabpapb + i�Ψa
a + 2i�Ψab

b pa

+(Ψa + Ψ b
apb + Ψ bc

a pbpc)
∂H0(p)
∂pa

(t− t0)

+Ψab

(
∂H0(p)
∂pa

∂H0(p)
∂pb

(t− t0) + i�
∂2H0(p)
∂pa∂pb

)

(t− t0) (65)

Ξa(p, t, t0) = Ψa + Ψ c
apc + Ψ bc

a pbpc + 2Ψab
∂H0(p)
∂pb

(t− t0) (66)

Ξab(p) = Ψab + Ψ c
abpc + Ψ cd

abpcpd . (67)

We will treat the quantities ReΨ and Ψa in an exact manner and all other
quantities in first order. We also split H0(p) = p2/2m + h(p) where the
function h(p) is small.

We can solve that parts of (64) containing Ψ and Ψa exactly. With this
well known solution we can now solve the full equation (64) and get

ar,p(r)(t) = e−
i
�

φ(p(r),t,t0)

(

1 − i

�
A(p(r), t, t0)ar,p

(r)
a +Ψa(t−t0)

(t0)

+Ba(p(r), t, t0)
∂

∂pa
a

r,p
(r)
a +Ψa(t−t0)

(t0)

+i�Cab(p(r), t, t0)
∂2

∂pa∂pb
a

r,p
(r)
a +Ψa(t−t0)

(t0)
)

, (68)
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with

A(p(r), t, t0) ≈
(
i�

2
Ψa

a + i�Ψab
b p

(r)
a + ReΨapa + Ψabpapb

)

(t− t0)

+
1
2

(

(Ψµ
ρ pµ + Ψµν

ρ pµpν)
δρτpτ

m
+ Ψρ

∂h(p)
∂pρ

+ Ψρσi�
δρσ

m

)

(t− t0)2

+
1
3

(

Ψρσ
δρνpν

m

δστpτ

m
+ (Ψ c

apc + Ψ bc
a pbpc)

1
2m
δabΨb

)

(t− t0)3

+
1

4m2
Ψabδ

bcpcΨfδ
af (t− t0)4 +

1
5
Ψab

1
4m2

δacΨcδ
bdΨd(t− t0)5 (69)

Ba(p(r), t, t0) ≈ (Ψ c
apc + Ψ bc

a pbpc)(t− t0)

+Ψab
δbfpf

m
(t− t0)2 +

ΨabΨeδ
be

3m
(t− t0)3 (70)

Cab(p(r), t, t0) = Ψab(t− t0) . (71)

The Phase Shift

Again we assume an interferometer geometry of Kasevich and Chu type with
a sequence of π/2−π−π/2 pulses with a time T between two pulses. Between
the pulses the states evolve according to the Hamiltonian with gravitational
interaction only. Therefore we have the following evolution from the initial

state a(t0) =
(
a1,p(t0)
a2,p+�k(t0)

)

to the final state after the last π/2 pulse:

a(tf ) = Uπ/2(t3)Ugrav(t3, t2)Uπ(t2)Ugrav(t2, t1)Uπ/2(t1)Ugrav(t1, t0)a(t0)
(72)

The probability I2 :=
∫
a∗2,p+�k(tf )a2,p+�k(tf )d3p to observe this state in

terms of the probability I1 :=
∫
a∗1,p(t0)a1,p(t0)d3p. With the initial conditions

a2,p+�k(t0) = 0, a1,p(t0) = 1 we get

I2 = I1(1 − cosφ) (73)

where

φ = T 2

{

ka

[

−∇aU

(

1 + 2 (1 − β) U
c2

− (α2 + α3 − α1)
w2

2c2

)

−2∇a∇bUδ
bcT

( 〈pc〉
m

− 5
4
∂cU

)

+
∇aHΦ

m
+ α2

wiwj∇aUij

2c2

]

(74)

−T
(

7
2
∆1

c2
∂cV

a +
1
2
∆2

c2
∂cW

a +
α1 − 2α2

2c2
∂cUw

a + α2
∂cU

a
b

c2
wb

)

4kc 〈pd〉
m

}

Here we defined 〈pa〉 =
∫
ϕ ∗ paϕd

3x and replaced the derivative with respect
to the coordinates by a derivative with respect to the proper length: ∂

∂xa =√
gaa(x0) ∂

∂ra with ra =
√
gaa(x0)dxa. We denote ∇a := ∂

∂ra and raise indices
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by δab. For simplicity we also neglected terms of the order v2/c2 where v may
be �k/m or 〈p〉/m.

Equation (74) describes the phase shift in terms of the transferred mo-
mentum, the interaction time and the various parts of the gravitational field.
This result is exact with respect to quantum mechanics; we performed no
quasi-classical limit. This result is also exact with respect to the external field
∇aU and to first order with respect to all other parts of the gravitational
interaction.

The first line consists of a modification of the non-relativistic Newtonian
gravitational acceleration. The first modification tests the PPN parameter β
and the second is a preferred frame effect: the acceleration depends on the
velocity of the laboratory with respect to the rest frame of the universe. The
first term in the second line is a curvature term. It describes the coupling
to the second derivative of the Newtonian potential. The next two terms in
the second line give further post Riemannian effects. The last line consists in
gravitomagnetic effects, and additional velocity dependent effects.

Numerical Estimates

In the following we want to estimate PPN parameters for the phase shift to
be expected for the atomic beam interferometer of the Kasevich-Chu type
assuming a null-result and using an accuracy of ∆φ/φ = 10−8. We assume
that the experiment takes place on the surface of the Earth. The atoms used
are characterized by their mass m = 10−26 kg, their velocity v ≈ 10−1 m/sec.
The laser wave vector is taken to be k = 106m−1.

The various contributions to the phase shift are given in Table 1. The
coupling to acceleration has already been tested [11] and the curvature term
has been discussed in [36].

Assuming a null-result, the calculated phase shift leads using the gravita-
tional potential of our galaxy to an estimate [43] 1− β ≤ 10−5 (presently [38]
β−1 ≤ 10−3). Preferred frame effects may be tested using the rotation of the

Table 1. List of effects due to the interaction of a scalar atom with a general PPN
parameterized gravitational field

Effect Typical Form Tested Parameter Phase Shift

acceleration ∇U – 106

curvature ∇∇U – 10−3

rel. corr. to COW ∇U/c2 1
2

+ γ 10−13

U∇U/c2 1 − β 10−2

frame dragging 7∆1 + ∆2 10−11

preferred frame α2 1(
α2 − α1

2

)
10−2

α3 + α2 − α1 1
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earth around the sun where 1-year-variations may occur. A null result leads
to α2 ≤ 10−4 (today 4 · 10−7), α1 ≤ 10−2 (today 2 · 10−4), α3 ≤ 10−2 (today
4 ·10−10). Also for γ we cannot get a better estimate than the current one [44].
Optical tests of PPN parameters have been proposed in [45, 46]. However, one
has to bear in mind that these are quantum tests of gravitational theories and
do therefore test gravity on another scale than bulk matter.

3.6 Tests of the Einstein Equivalence Principle

Atomic interferometry is very well suited for testing hypothetical effects which
are due to violations of the Einstein Equivalence Principle on the level of
the quantum matter equation, that is, the Dirac equation or the Schrödinger
equation. See also [47].

The Generalized Dirac Equation

We start with a generalized Dirac equation (see, for example, [48, 49])

i∂tϕ = −ic(α̃i∇i + iΓ )ϕ+mc2β̃ϕ+ eφϕ (75)

(i, j = 1, 2, 3) where ϕ is a complex 4-component field. All matrices are com-
plex 4 × 4-matrices and α̃i and β̃ obey (α̃i)+ = α̃i, β̃+ = β̃ but are not
assumed to fulfill a Clifford algebra. Furthermore, Γ+Γ + i∂iα̃

i. The Maxwell
field comes in through minimal coupling ∇i = ∂i − ie

c Ai. φ and Ai are the
electromagnetic scalar and vector potentials. Here we also take the usual form
of the Maxwell field as granted (for the experimental status of the electromag-
netic field to obey the Einstein Equivalence Principle compare [50, 51]). It is
of course also possible to couple the Maxwell field in an anomalous way to the
GDE, analogous to the THεµ-formalism. However, since any modification of
this kind will result in corrections of the same structure as those which we
will derive below, we will not take anomalous couplings to the Maxwell field
into account.

We also introduced a c which has the dimension of a velocity. This velocity
can be introduced by considering the null cones which the GDE defines: c is
the maximum speed of propagation (from the physical point of view it is
approximately the velocity of light, because any deviation from SRT, if there
is any, is small). The purpose of this velocity is twofold: First, it makes the
coefficient in front of the spatial derivative dimensionless (what is necessary
in order to connect α̃i with space-time geometry), and second, it will be used
later as ordering parameter in a Foldy–Wouthuysen transformation leading to
the non-relativistic limit of the GDE.

The splitting between the matrices cΓ and mc2β̃ may be defined by means
of a WKB approximation (compare [52]). While mc2β̃ is the “mass”-tensor
which appears in the lowest order of approximation, Γ influences the first order
only. Both matrices have the dimension of length−1. In order to extract from
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the “mass”-tensor a dimensionless matrix possessing a geometrical meaning,
we introduced a parameter m (so that mc2 has the dimension time−1) which
can also be defined via the WKB approximation.

Equation (75) is general enough to describe violations of basic principles
of GR. However, since due to the properties of the matrices α̃i (75) is a
symmetric hyperbolic system very general principles of quantum mechanics
are still fulfilled, namely (i) the well-posedness of the Cauchy problem, (ii) the
superposition principle, (iii) finite propagation speed, and (iv) a conservation
law. Indeed, it has been shown that this generalized Dirac equation can be
derived from these fundamental principles, see [48] for a review.

If we introduce the quantities

4
g00

:= trβ̃2 , g0i :=
g0i

g00
:=

1
4
tr(α̃i) (76)

gij := − g
ij

g00
:=

1
4
tr(α̃iα̃j) − 2g0ig0j (77)

then the matrices α̃i and β̃ fulfill

α̃(iα̃j) − gij1 − 2g0(iα̃j) = Xij (78)

α̃iβ̃ + β̃α̃i − 2g0iβ̃ = 2Xi (79)

β̃2 − 1
g00

= X (80)

where the deviation from the usual Clifford algebra is described by the matri-
ces X, Xi, and Xij . (In the case X = 0, Xi = 0, and Xij = 0 one can repre-
sent αi = (γ0)−1γi and β = (γ0)−1 with matrices γµ fulfilling γ(µγν) = gµν ,
µ, ν = 0, . . . 3. Even in the case that the X-matrices do not vanish it can be
shown [52, 53] that the matrices α̃i and β̃ fulfill a generalized Clifford alge-
bra.) If the matrices α̃i and β̃ do not fulfill the usual Clifford algebra then
the characteristic surfaces, the null cones, and the mass shells (see Figure)
of the generalized Dirac equation split and do not longer coincide with the
usual light cones and mass shells. It is obvious that in these cases Lorentz
invariance is violated. This has also been discussed in [54] (see also [49] and
[55] and references therein).

The Generalized Pauli Equation

By performing a non-relativistic limit we arrive at a generalized Pauli equation
[56] (see also [57] for the case without gravity and coupling to the electromag-
netic field)
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Hϕ = − 1
2m

(

δij +
δmij

I

m
+
δm̄ij

Ik

m
σk

)

∇i∇jϕ−
(

1
m
ai

j + cAi
j

)

σji∇iϕ

+

[

eφ(x) +
e

2m
Hi(x)(Ki + (δik +Ki

k)σk)

+(mc2Bi + cTi)σi + (1 + Ciσ
i)mU(x) + δmPijU

ij(x)

]

ϕ (81)

where φ(x) is the electrostatic potential and Hi = 1
2εijkHjk the magnetic

field. We introduced in addition a gravitational potential tensor U ij with
δijU

ij = U [38].
If space-time is endowed with a hypothetical torsion then the usual Dirac

equation minimally coupled to metric and torsion gives rise to the quantities
ai

j and Tj . The latter is the space part of the axial torsion vector, and the
first is related to the corresponding time component, see [58].

All terms but the U , U ij , φ, Hi and the Ai are constant. The tensors δmij
I

and δm̄ij
Ik give spin dependent anomalous inertial mass tensors, ai

j and Ai
j

are spin-momentum couplings, mc2Bi may be considered as a spin-dependent
“rest mass”, the Ti may be interpreted as the space-like part of an axial
torsion vector, and δmPij and Ci are anomalous spin dependent gravitational
mass tensors. Ki and Ki

k give anomalous modifications of the coupling of the
magnetic field to the spin- 1

2 particle. Due to our systematic approach (81)
contains all possible anomalous interactions on the non-relativistic level. The
GPE (81) is a non-trivial generalization of Haugan’s [59] test theory for matter
with spin.

Note that there is no need and no possibility to introduce any �. Indeed,
also in the usual Schrödinger theory only the ratio �/m enters the equation
of motion (see [60]). All our mass-like parameters are to be understood in
the sense of being the ratio of mass and �. Our mass-like parameter has the
dimension of time/length2, and our Hamilton operator has the dimension
1/time. It is no problem to introduce artificially an � so that the equations
acquire the usual form and all parameters have the usual dimensions. Ti and
ai

j have the dimension 1/length. In the following we will neglect the coupling
of the magnetic field to anomalous terms. It is not possible to absorb the
parameters

(
1
ma

i
j + cAi

j

)
σj , Bi, and Ti into the inertial or gravitational spin-

dependent anomalous mass tensors.
Since (81) can be inferred from the generalized Dirac equation (75) all

anomalous terms in (81) are derived in systematic manner. These are the
most general anomalous terms on the non-relativistic level which can be de-
rived from a generalized Dirac equation which is the most general equation
obeying the very general basic principles listed above. The anomalous terms

are necessarily connected with that parts of the matrices α̃i, β̃, and
0

Γ which
are responsible for a possible violation of LLI and LPI.
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δmij
I , δm̄ij

Ik, ai
j , A

i
j , and Bi give rise to LLI-violation, while Ci and δmPij

are responsible for LPI-violation. If all these coefficients vanish, we recover
the usual Schrödinger equation coupled to the Newtonian potential. It is clear
that with the energy mc2 and the characteristic dimensionless quantity U/c2

describing a gravitational interaction, the generalized Pauli equation is the
most general 2nd order differential equation including spin and the gravita-
tional potential tensor.

Matter Wave Interferometry

We propose two kinds of interference experiments, first a experiment with
a spin-flip where both parts of the matter wave propagate with the same
momentum, and second an interference experiment which measures the accel-
eration.

Spin-Flip Experiment

We take an atomic beam with a definite spin value along a certain axis prop-
agating with momentum pi. We split this atomic state into two states and
perform with one of these states two spin-flips, one at time t and the second
one reverses the first flip at time t + ∆t. The phase shift after the second
splin-flip (for convenience, we introduce �) φ = 1

�
(H(p, S) −H(p,−S))∆t is

given by (for Ai = φ = 0)

φ =
2
�

(
δm̄ij

Ik

2m2
pipj − �

m
ai

kpi − cAi
kpi +mc2Bk + CkmU + cTk

)

Sk∆t , (82)

where Sk is the spin of the atoms. To first order we can replace the momentum
by the velocity

φ =
1
�

(
δm̄ij

Ik

m
piδjkl

k − 2(cAi
jm+ ai

j)δikl
k

+ 2mc2Bj∆t+ 2CjmU∆t+ �cTj∆t

)

Sj . (83)

The coefficients of the spin-momentum coupling enter the phase shift only via
the length of propagation between the two spin flipping processes.

For an atom interferometer of Kasevich and Chu type l ≈ 1 cm, m ≈
10−26 kg, v ≈ 10 cm/sec, S = 1

2 , and ∆t ≈ 0.1 sec. With the accuracy
∆φ/φ = 10−8 we can estimate in the case that we get a null result: |δm̄ij

Ik/m| ≤
10−7, |Ai

j | ≤ 10−17, |ai
j | ≤ 1 m−1, |Bi| ≤ 5 · 10−27, |Ci| ≤ 10−17, and |Ti| ≤

3 · 10−10 m−1. For the first coefficient we may get a better estimate if we take
a large velocity v = 103 m/sec and l = 100 m. We get |δm̄ij

Ik/m| ≤ 10−15.
This generalises results in [55] (see also [61]). If one of these quantities turns
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out to be non-null, then we infer a violation of Lorentz invariance and of the
Universality of the Gravitational Redshift. However, all these quantities but
the Ai

j and ai
j can be measured better by Hughes–Drever type experiments.

Measurement of Acceleration

For the atom beam interferometer of Kasevich and Chu [11, 12] we get a phase
shift φ = −kia

iT 2 where T is the time between the laser pulses and ai the
acceleration

ai = −
(

δij +
δmij

I

m
+ 2

(
δm̄ij

Ik

m
+ δijCk

)

Sk

)

∂jU − δij δmPkl

m
∂jU

kl . (84)

For a spherically symmetric gravitational field the potential U and U ij are
easily computed [38]. The phase phase shift then has the structure

δφ = − (1 + α) k T 2g cos (ϑ+ b) , (85)

where α and b are quantitised which depend on the various coefficients
δmij

I /m, δm̄ij
Ik/m, Ck, δmPkl/m as well as on the spin Sk [56]. Using atomic

interferometry α and b and, thus, all the anomalous coefficients can be deter-
mined with an accuracy of the order 10−6 which may improve present bounds
on δmPkl/m by two orders or magnitude.

4 Test of Anomalous Dispersion Relation

One of the most prominent predictions of quantum gravity schemes is a devi-
ation from the ordinary dispersion relation for photons as well as for massive
particles. The modified dispersion relation reads

m2 = E2 − p2 + f(E,p) , (86)

where we choose the simple model f(E,p) = η(E3/EPl). Here η is a dimen-
sionless parameter lying between 10−3 and 1 coming from the idea that the
quantum gravity scale should lie between the grand unification scale with
∼1025 eV and EPl ∼ 1028 eV. The extra term f(E,p) can be probed by laser
and atomic interferometery.

4.1 Tests with Laser Interferometry

It is amazing but with the next generation of gravitational wave laser inter-
ferometers one will reach, at least in principle, the sensitivity needed for the
search for quantum gravity effects: The present day sensitivity of, e.g., LIGO
is of the order 10−21 for the relative difference of the arm lengths ∆L/L of the
Michelson interferometer of 4 km length. The projected sensitivity of the next
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Fig. 3. The unequal-arm interferometer which may be used to search for dispersion
effects. The paths for the original ω and the frequency doubled ω′ beams photons
are displayed by solid and dashed lines

generation, advanced LIGO, is ∆L/L ∼ 10−24 at a frequency of about 10 Hz.
If one measured a periodic signal each 0.1 s over one year then, by statistics,
the sensitivity is almost ∆L/L ∼ 10−28 which coincides with the ratio of lab-
oratory energies and the Planck energy. This is the sensitivity required for a
serious laboratory search for quantum gravity effects. This sensitvity to strain
is related to the sensitivty to detect intensity differences in the interference
pattern or, equivalently, to phase differences.

From the above modified dispersion relation for photons, m = 0, we get
the modulus of the wave vector
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k(ω) = ω
(

1 +
1
2
ω

ωQG

)

, (87)

where ωQG = EPl/η. The main feature of this solution is that the wave vector
is no longer a homogeneous function of the frequency. This property of k(ω)
can be explored by performing an interference experiment with two different
frequencies [62]. The appropriate interferometer is a Michelson interferometer
with unequal arm lengths. For a length difference of δL = L′−L, the intensity
is given by I(ω) = 1

2 (1 + cosφ(ω)) with φ(ω) = k(ω)δL + φ0 where φ0 is a
constant phase. One can now compare the intensity for two waves of different
frequencies ω and ω′ = 2ω travelling simultaneously in the same interferometer
for a varying arm length difference (the doubled frequency can be obtained
using a second harmonic generator device (SHG)). In the case of ordinary
dispersion, the intensity for ω′ varies twice as fast for varying δL than for the
original frequency ω. For anomalous dipersion, the variation of the intensity
for ω′ = 2ω is slightly different from being twice the variation for ω, see Fig. 4.
This difference can be related to a phase difference

φ(2ω) − φ(ω) =
3
2
ω2

ωQG
δL . (88)

Another way to search for effects induced by an anomalous dispersion
relation uses interferometry in frequency space. Due to the properties of the
SHG it is possible to set up an interferometer in frequency space: An incoming
wave of frequency ω consists of, after passing a SHG, two waves, one with the

Fig. 4. Qualitative description of the dependence on δL of the intensities I(ω)
and I(2ω). Different maximum values for I(ω) and I(2ω) reflect the fact that the
intensities of the two beams that emerge from SHG in general are not identical. Left:
The case of ordinary dispersion relation showing a particular correlation between
the intensities. Right: The case of modified dispersion relation. The anomalous term
induces a misalignment between the maxima of I(2ω) and the maxima and minima
of I(ω). This misalignment is proportional to (ω2/ωQG)δL
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original frequency ω, the other with the doubled frequency 2ω. If these two
waves run through a second SHG3, then frequency addition and subtraction
3 We shortly describe the process of frequency addition and subtraction. The basic

Maxwell equation in nonlinear dielectric media is given by

∇2Ei −
ε

c2
∂2

t Ei = Pi = χijkReEjReEj , (89)

where χijk is the second order electric susceptibility. We now treat the case of
medium with no electric field and an incoming wave Ein. This wave leads to a
polarization inside the dielectric material. This polarization is the source of a new
electric field Ei inside the material

∇2Ei −
ε

c2
∂2

t Ei = Pi = χijkReEin
j ReEin

j (90)

We consider the case that incoming wave consists of two frequencies

Ein
i (x, t) = Ein,1

0i ei(ω1t−k(ω1)x) + Ein,2
0i ei(ω2t−k(ω2)x) (91)

with the wave vector obeying k2(ω) = ε(ω)ω2/c2 (it is obvious that anomalous
dispersion can be neglected here). The polarization Pi then is

Pi = 2χijk

(
Re(Ein,1

0i Ein,1∗
0j + Ein,2

0i Ein,2∗
0j )

+Re
(
(Ein,1

0i Ein,2
0j + Ein,2

0i Ein,1
0j )ei((ω1+ω2)t−(k(ω1)+k(ω2))x)

)

+Re
(
(Ein,1

0i Ein,2∗
0j + Ein,2∗

0i Ein,1
0j )ei((ω1−ω2)t−(k(ω1)−k(ω2))x)

)

+Re
(
Ein,1

0i Ein,1
0j ei(2ω1t−2k(ω1)x)

)
+ Re

(
Ein,2

0i Ein,2
0j ei(2ω2t−2k(ω2)x)

))
(92)

and consists of parts with the frequencies

ωshg = {0, 2ω1, 2ω2, ω1 + ω2, ω1 − ω2} (93)

and the wave vectors

kshg = {0, 2k(ω1), 2k(ω2), k(ω1) + k(ω2), k(ω1) − k(ω2)} . (94)

(Waves with these frequencies and wave vectors not necessarily fulfill the wave
equation inside or outside the material. However, we calculated the polarization
due to a given electric field, not a propagating wave.)

We choose one of these waves as source. Then the Maxwell equation reads

∇2Ei −
ε

c2
∂2

t Ei = Pi = χijkReEin
j ReEin

j ei(ωshgt−kshgx) = P̂ie
i(ωshgt−kshgx) (95)

For solving this equation for the electric field Ei we make the ansatz Ei =
Ei(x)eiωshgt and get

∇2Ei(x) +
ε

c2
ω2

shgEi(x) = P̂ie
−ikshgx . (96)

We assume a slowly varying amplitude Ei(x) = Êi(x)e−ikx. Then
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can occur. That is, the outgoing waves consists of frequencies 0, ω, 2ω, and
3ω. The latter one is forbidden by the matching condition.

Using a general ansatz for the waves which leave the SHG one can show [62]
that the waves leaving the second SHG consists of two frequencies, ω and 2ω.
Each of these waves consists of a superposition of two waves which propagated
between the two SHGs with different frequencies. Some calculation gives that
the intensity of the 2ω wave is given by

− k2Êi(x)e−ikx − 2ik∇Êi(x)e−ikx +
ε

c2
ω2

shgÊi(x)e−ikx = P̂ie
−ikshgx (97)

We identify k2 = ε
c2

ω2
shg and get

− 2ik∇Êi(x) = P̂ie
ikxe−ikshgx (98)

what can be solved easily with the boundary condition Êi(x = 0) = 0:

Êi(x) ∼ 1

kshg − k

(
e−i(kshg−k)x − 1

)
∼ sin((kshg − k)x/2)

kshg − k
e−i(kshg−k)x/2 . (99)

Therefore the intensity of the wave generated inside material is

I ∼ sin2((kshg − k)x/2)

(kshg − k)2
(100)

which sahows maximum growth (linear with x) if the condition

kshg − k = 0 (101)

is fulfilled. This condition is called phase matching. Only if this condition is
fulfilled, then waves with frequencies ωshg related to the wave vector kshg will be
created. (For a given frequency ω phase matching is a problem of the material to
possess the appropriate refractive index.)

We can now discuss the phase matching and, thus, the possibility of frequency
doubling and frequency subtraction for the two cases we are interested in:

1. Phase matching for ω1 = ω2 = ω and frequency doubling, ωshg = 2ω:

k − kshg = k(ω + ω) − k(ω) − k(ω) = k(2ω) − 2k(ω) = 0 . (102)

2. Phase matching for ω1 = 2ω and ω2 = ω:
– Frequency addition: ωshg = ω1 + ω2 = 3ω

k − kshg = k(3ω) − k(2ω) − k(ω) = 0 . (103)

– Frequency subtraction ωshg = 2ω − ω = ω

k − kshg = k(ω) − k(2ω) + k(ω) = 0 . (104)

Therefore, the phase matching condition for ω + ω → 2ω is the same as for
2ω − ω → ω.
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Fig. 5. The waves leaving two SHGs. The two waves leaving the second doubler
with frequency 2ω form an interferometer since they propagate between the two dou-
blers at different frequencies. Different paths in the figure only distinguish different
frequencies: all beams follow the same path in configuration space

I(2ω) = B2
21 +B2

22 + 2B21B22 cosφ(2ω) , (105)

where B21 and B22 are the intensity of the waves with frequency ω and 2ω
leaving the second SHG if a wave with amplitude 1 and frequency 2ω enters
this SHG. The phase is given by

φ(2ω) = φ0 + (k(2ω) − 2k(ω))δL , (106)

where δL is the distance between the two SHGs and φ0 is some constant phase.
Since the generation of doubled frequencies is not very efficient (may be up to
30%), B22 is of the order of B21, so that the visibility of the 2ω-interference
pattern may reach unity. Again, with a variation of the distance between the
two SHGs one is sensitive to k(2ω) − 2k(ω) = ω2

ωQG
. The variation of the

distance may be accomplished by using a third SHG and by electronically
switching on and off in an alternating mode the capability of the second and
third SHG to do frequency addition and subtraction. With this setup one
avoids mechnical transport of the second SHG which induces a lot of errors.

4.2 Tests with Atomic Interferometry

From the dispersion relation (86) we get to first order in the quantum gravity
corrections

E =
√
m2 + p2

(

1 +
1
2

√
m2 + p2

EQG

)

. (107)

The group velocity then is

vgr =
p

√
m2 + p2

(

1 +

√
m2 + p2

EQG

)

. (108)



190 C. Lämmerzahl

For small velocities v, the qg-correction in the velocity is of the order ∆vQG ∼
mc2/EQGv. For an atom we have typically mc2 ∼ 100 GeV so that ∆vQG ∼
10−17v.

In a recent paper [63] an atom interferometer setup has been proposed
which should be capable to detect gravitational waves. The gravitational
waves are measured through a corresponding change of the velocity of the
atoms while flying through the interferometer. This velocity change is given
by ∆v ∼ v0ḣT where v0 is the initial velocity of the atoms, ḣ the time deriv-
ative of the amplitude of the gravitational wave, and T the time-of-flight of
the atom through the interferometer. Since T should be smaller than a period
of the gravitational wave, ḣT ≤ h, so that ∆v ∼ v0h. For atomic beams with
velocities between 103 and 104 m/s, we get ∆v ∼ 10−17 m/s as a result of the
interaction with the gravitational wave.

That means for our quantum gravity induced modification of the velocity,
that even for v = 1 m/s we have the effect which should be in the range of
sensitivity of MIGO. Again, for a search of such an effect one should measure
and to compare the phase shift for two different velocities.

5 Test of Space-Time Fluctuations

Beside modifications of well established laws like the Maxwell or the Dirac
equation, space-time fluctuations are another prominent prediction of schemes
of quantum gravity. space-time fluctuations influence the propagation of, e.g.,
light with the consequence that the time of flight between two events is not
sharp but, instead, fluctuates. A consequence of this is that sharp signals from,
e.g., distant stars will wash out [64]. Other consequence are that distance
measurements by optical devices will be limited by a fundamental noise and
that quantum states may show decoherence or a lowering in the visibility of
the interference. These effects will be discussed below.

5.1 Atom and Neutron Interferometry

The quantum mechanical treatment of the Maxwell field implies that there are
fluctuations in the electromagnetic field. These fluctuations are present even
if there is no “real” Maxwell field; these vacuum fluctuations influence all
physical effects and leads, e.g., to shifts in the atomic levels called Lamb shift.
If one takes into account that boundary conditions for the electromagnetic
field are responsible for the structure of the vacuum fluctuation then it is clear
that such vacuum fluctuations can be detected by interferometric methods:
one has to split an atomic wave and has to lead one part through a region
with some boundary conditions. After leaving this region the two parts of
the atomic beam can be brought together leading to an interference pattern
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which depends on the vacuum fluctuation, or on the boundary conditions. By
modifying the boundary conditions the influence can be tested directly4.

If one carries through a quantization scheme for the gravitational field
one expects similar effects. However, there are several ideas of fluctuations of
space-time: first there may be a fluctuating metric δgµν leading in some limit
to a fluctuating Newtonian potential δU . Second the topology of space-time
may be fluctuating leading to some space-time foam. And a third possibility
is that the space-time points become unsharp and are fluctuating itself [65].

A reasonable model for the influence of quantum fluctuations of space-time
leading to a space-time foam, has been given by Hawking [66] and worked out
by Ellis et al. [67]. These fluctuations introduce in test quantum systems a
coherence disturbing term. This is described by an equation of motion for the
density matrix of the quantum system which has the form of a Markovian
master equation

i
d

dt
ρ = [H, ρ] + hρ (109)

where hρ↔ (hρ)ab = habcdρcd. We restrict to finite dimensional systems, e.g.
two-level systems, a, b, . . . = 1, 2. For the evolution we require

1. hρ is hermitian if ρ is,
2. conservation of probability trρ = 1,
3. trρ2 ≤ 1,
4. conservation of energy.

We assume a Hamilton operator of the form

H =
(
E + 1

2∆E 0
0 E − 1

2∆E

)

. (110)

The first condition implies tr d
dtρ = 0 and therefore haacd = 0 (in our two-

dimensional model h22cd = −h11cd), and the second condition 0 ≥ d
dt trρ

2 =
2tr(ρhρ) = 2ρabhabcdρcd. The third condition reads for H as the operator
corresponding to the observation of the total energy of the quantum system

d

dt
E =

d

dt
tr(Hρ) = tr

(

H
d

dt
ρ

)

= −itr(Hhρ) = −i∆Eh11cdρcd (111)

so that the diagonal terms of the fluctuation induced term vanish h11cd =
h22cd = 0. It can further been shown that habcd = hcdab so that also hcd11 =
hcd22 = 0.

One finally arrives at the equations of motion for the components of the
density matrix
4 These quantum fluctuations of the electromagnetic field due to boundary condi-

tions have already been observed using spontaneous decay of atomic states: Since
the channels into which a photon can be emitted depends on whether the atom
is inside a cavity or outside this leads to a modification of the lifetime of excited
atoms.
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i
d

dt

(
ρ11 ρ12
ρ21 ρ22

)

=
(

0 − i
2 (α+ γ) +∆E

− i
2 (α+ γ) −∆E = 0

)

, (112)

where α > 0 and γ > 0 are related to the remaining degrees of freedon h1212

and h2121. The solution is given by [67]

ρ(t) =
1
2

(
1 e−

1
2 (α+γ)t−i∆Et

e−
1
2 (α+γ)t+i∆Et 1

)

(113)

which clearly describes an evolution where the states become completely
mixed for large times.

If one relates the coefficients α and γ to space-time fluctuations then the
decay of coherence is an indicator for certain quantum gravity effects. In an
interference experiment the above effects decrease the visibility of the interfer-
ence pattern. Assuming for neutron interferometry a decrease in the visibility
of about 20% during a time of flight of t = 1/3000 sec, gives an estimate
α + β ≤ 2 · 10−21 GeV. For atom interferometry this attenuation of the in-
terference pattern has a competing cause, namely the finite lifetime of used
atomic states. However, if one assumes a time of flight which is about four
orders of magnitude longer than in neutron interferometry, then this may
sharpen the above estimate by four orders.

In this connection we also want to mention the approach of Percival [68, 69]
using an alternative quantum theory based on the notion of primary state
diffusion. This approach describes open quantum mechanical systems with a
similar behaviour than discussed above.

At last we want mention that neutron interferometry in the WKB regime
is also capable to detect fluctuations in the Newtonian piotential. The reason
is that due to the fact that the gravitational potential appears in a square
root, the expansion of the square root gives quadratic effects which do not
average to zero but, instead, add up [70].

5.2 Laser Interferometry

Initiated by the research of G. Amelino–Camelia [3] who proposed to use a
random-walk ansatz to describe the effect of space-time fluctuations of the
propagation of light (see also the lecture of J. Ng in this volume) and to use
gravitational wave interferometers to search for these effects, in a recent work
[4] optical cavities with a very high long term stability have been used for the
search for space-time fluctuations.

The ansatz for the strain noise spectrum is
(
∆L

L

)2

=
∫
Ssf(ν)dν with Ssf(ν) = ζ

Λ

c

(
LPl

Λ

)α (
ν

c/Λ

)γ

, (114)

where Λ is a length characteristic of the experimental setup, ν the frequency,
and LPl the Planck length. Following Amelino–Camelia, the above general
frame is specified for two random–walk hypotheses:
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Sα=1,γ=−2
sf = 5 · 10−27ζRW1

(m
Λ

)2
(

Hz
ν

)2

Hz−1 (115)

Sα=2,γ=−2
sf = 7 · 10−62ζRW2

(m
Λ

)3
(

Hz
ν

)2

Hz−1 , (116)

with Λ given in units of m and the frequency in Hz. The overall order of mag-
nitude of these spectral noise densities is determined by the Planck length and
the characteristic length of the experimental setup which we took to be 5 cm.
The unspecified parameters ζRW1 and ζRW2 are of the order 1. From that ex-
pressions it is clear that low frequencies and small devices are preferred setups
for the search for these kind of fluctuations. We like to emphasize again that
all these models, and so are the assumed order of magnitude for these effecs,
are mere hypotheses. However, they show that such kind of effects can signal
effects due to quantum gravity and that any improvement of experimental
data is important. One may consider the search for fundamental space-time
fluctuations in devices like optical cavities or in gravitatinal wave interferom-
eter to be on the same level as searches for an anisotropy of the speed of light
or, more generally, as a search for an anisotropy of space.

Amelino–Camelia [3] confronted his RW hypotheses with the possible per-
formance of gravitational wave interferometers. In such interferometers the
beam splitter and mirrors are independent and, thus, are subject to seismic
noise in the case of Earth–bound interferometers, or to the noises of the drag–
free control in the case of LISA. That means that space-time fluctuations can
be searchd for in the frequency range larger than 100 Hz for Earth bound de-
vices and for frequencies larger than 1 mHz for LISA. For smaller frequencies
these devices do not possess a high long term stability. Such a stability can
be provided by optical cavities. With these devices one can access the µHz
range.

By using monolithic resonators one has to make the assumption that the
space-time fluctuations experienced by light are different, that is, are not com-
pensated, by the space-time fluctuations experienced by the cavity material
(spacing material). One way to exclude such compensation is to use different
cavity materials.

In the actual search for space-time fluctuations, the data of a frequency
comparison between two optical resonators has been analyzed. (One also may
use a comparison between a cavity and another clock like an atomic clock.)
The comparison of the two frequencies amounts to a comparison of the optical
path length of the two resonators δL = δ(n1L1 − n2L2) where n1,2 and L1,2

are the refraction index and the lengths of the two cavities. Furthermore we
have to assume that the fluctuations of the two cavities are not correlated.
That means δL = δ(n1L1) − δ(n2L2). This assumption is not required for
cavity–clock comparisons.

The actually measured quantity is the beat frequency ν2 − ν1 for the two
cavities where each of these frequencies is of the order 282 THz. The fluctua-
tions in this beat frequency consist of the hypothetical space-time fluctuations
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as well physical fluctuations coming from temperature fluctuations and quan-
tum uncertainties as well as fluctations in the laser lock:

δ

(
ν2 − ν1
ν1

)

=
(
δLsf

2

L2
− δL

sf
1

L1

)

+

(
δLphys

2

L2
− δL

phys
1

L1

)

+
(
δLlock

2

L2
− δL

lock
1

L1

)

+ . . .

= Ssf + Sphys + Slock + · · · (117)

Half of the total noise represents an upper bound to the looked for Ssf .
Two geometric setups are analyzed: in the first arrangement (setup A) the

frequencies of two resonators oriented parallel and located in two different
cryostats separated by a distance of 2.5 m have been compared, and in the
second setup (setup B) two cavities oriented orthogonally and hosted in the
same cryostat separated by 10 cm. The frequency difference of the two cavities
has been measured each second. For the second setup the frequency has been
averaged over 5 min what does not change the data if one consideres very low
frequencies as we do.

From these data sets one gets the spectral noise density shown in Fig. 6.
The curves for the spectral noise density can be estimated within the two
random walk ansatzes by S < 7 · 10−31/ν and S < 3 · 10−34 Hz/ν2. Com-
parison with the actual ansatzes (115) and (116), one gets estimates for the
undetermined parameters ζRW1 and ζRW2,

ζRW1 ≤ 2 · 10−13 ζRW2 ≤ 4 · 1020 . (118)

Since these parameters are of the order 1, this clearly rules out the random
walk hypothesis 1.

Fig. 6. The spectral noise densities for setup A and setup B. For setup B two data
set have been used (Fig. from [4])
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This review article aims at presenting the theory of inflation. We first describe
the background spacetime behavior during the slow-roll phase and analyze
how inflation ends and the Universe reheats. Then, we present the theory
of cosmological perturbations with special emphasis on their behavior dur-
ing inflation. In particular, we discuss the quantum-mechanical nature of the
fluctuations and show how the uncertainty principle fixes the amplitude of
the perturbations. In a next step, we calculate the inflationary power spectra
in the slow-roll approximation and compare these theoretical predictions to
the recent high accuracy measurements of the Cosmic Microwave Background
radiation (CMBR) anisotropy. We show how these data already constrain the
underlying inflationary high energy physics. Finally, we conclude with some
speculations about the trans-Planckian problem, arguing that this issue could
allow us to open a window on physical phenomena which have never been
probed so far.

1 Introduction

Inflation is the most promising theory of the early Universe. It was invented
by A. Guth [1] at the beginning of the 80’s in order to solve the puzzles of the
hot Big Bang theory. A very interesting aspect of the inflationary theory is
that it allows us to build a bridge between cosmology and high energy physics.
This is particularly valuable in view of the fact that it is difficult to probe
physics beyond the standard model of particular physics.

However, the details of the underlying particle physics model are encoded
into the fine structure of the cosmological observables. This is why, after the
invention of the inflationary scenario and during quite a long time, it was
in fact only possible to check the consistency of the inflationary predictions.
The situation has now changed drastically with the recent releases of very high
accuracy cosmological data. One can now take advantage of the full predictive
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power of inflation with the hope to learn about physics in a regime which has
never been reached before.

The goal of this review article is to give a general presentation of the
inflationary scenario. In particular, we will emphasize how the origin of the
inhomogeneities present in our Universe is explained in the framework of in-
flation. We will see that it is based on an elegant interplay between general
relativity and quantum theory. Then, we will present the corresponding pre-
dictions made by inflation and will study how the currently available data can
already put some constraints on the underlying particle physics models.

This article is organized as follows. In the next section, we describe the
evolution of the inflationary background, the slow-roll phase and the reheat-
ing. Then, we present the theory of cosmological perturbations of quantum-
mechanical origin and compare its predictions to the available data. Finally, we
conclude this article with some speculations concerning the trans-Planckian
problem of inflation, demonstrating that future astrophysical observations will
maybe open a new window on high energy physics.

2 The Inflationary Universe

2.1 Basic Equations

The cosmological principle implies that the Universe is, on large scales, homo-
geneous and isotropic. As a consequence, the metric tensor which describes
the geometry of the Universe is of the Friedman-Lemâıtre-Robertson-Walker
(FLRW) form, namely

ds2 = −c2dt2 + a2(t)γ(3)
ij dxidxj = a2(η)

[
−dη2 + γ(3)

ij dxidxj
]
, (1)

where γ(3)
ij is the metric of the three-dimensional spacelike sections. The three-

dimensional sections have a constant scalar curvature. The variable t is the
cosmic time while η is the conformal time. They are linked by the relation
cdt = adη. In this article, we will work with dimensionless coordinates xi and,
as a consequence, the scale factor a(η) will have the dimension of a length.

The matter is assumed to be a collection of N perfect fluids and therefore
its stress-energy tensor is given by the following expression

Tµν =
N∑

i=1

T (i)
µν = (ρT + pT)uµuν + pTgµν , (2)

where ρT is the (total) energy density and pT the (total) pressure. These two
quantities are linked by the equation of state, pT = ω (ρT) [in general, there
is an equation of state per fluid considered, i.e. pi = ωi(ρi)]. The vector uµ

is the four velocity and satisfy the relation uµu
µ = −1. This means that one



Inflationary Cosmological Perturbations of Quantum-Mechanical Origin 201

has uµ = (1/a, 0) and uµ = (−a, 0). The fact that the stress-energy tensor is
conserved, ∇αTαµ = 0, amounts to

ρ′
T

+ 3
a′

a
(ρT + pT) = 0 . (3)

This expression is obtained from the µ = 0 component. The component µ = i
does not lead to an interesting equation for the background. If one assumes
that each fluid is separately conserved then the above equation is valid for
each species.

We will assume that gravity is correctly described by the theory of General
Relativity even in the very early Universe. This means that the equations
which link the geometrical part to the matter part are nothing but the Einstein
equations

Rµν − 1
2
Rgµν = κTµν , (4)

where κ ≡ 8πG/c4 = 8π/m2
Pl

. These equations, in the case of a FLRW Uni-
verse, are differential equations determining the time evolution of the scale
factor and read

3
a2

[(
a′

a

)2

+ k
]

= κ
N∑

i=1

ρi, − 1
a2

[

2
a′′

a
−

(
a′

a

)2

+ k
]

= κ
N∑

i=1

pi , (5)

where a prime denotes a derivative with respect to conformal time. In the
following, we will use the definition H ≡ a′/a. The parameter k = 0,±1
represents the curvature of the spacelike sections. If, in addition, the equation
of state of the perfect fluids are provided, then we have a closed system of
differential equations and, therefore, the evolution of the corresponding model
of the Universe is completely specified.

2.2 The Inflationary Hypothesis

By definition, inflation is a phase of accelerated expansion, i.e. the scale factor
satisfies [2]

d2a

dt2
> 0 . (6)

It is interesting to postulate that such a phase took place in the very early
Universe because, in this case, one can explain many different seemingly para-
doxical facts like, for instance, the horizon problem or the flatness problem.
Because of the latter, from now on, we will put k = 0 in the Einstein equa-
tions. More precisely, one can show the inflationary scenario is satisfactory
if the number of e-folds, i.e. the logarithm of the scale factor at the end of
inflation to the scale factor at the beginning of inflation is greater than 60 [2],

NT > 60 . (7)
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More detailed arguments about the advantages of inflation can be found in [3]
but, at this point, it is important to notice the following three facts. Firstly,
inflation is convincing because, by means of a single concept or hypothesis,
one can solve many different problems. In this sense, inflation is an economical
assumption. Secondly, as we will show below, inflation is falsifiable since it
makes definite predictions that we will describe. Therefore, there is the hope
either to confirm or to exclude this hypothesis and, in any case, there is the
certainty to learn something about the early Universe. Thirdly, inflation is
defined by the condition (6) but this does not prejudge the physical nature
of the matter responsible for the acceleration of the Universe. The only thing
one can say is obtained by expressing the acceleration of the scale factor in
cosmic time. Using the Einstein equations, one gets

ä

a
= −κ

6
(ρ+ 3p) , (8)

where a dot denotes a derivative with respect to the cosmic time. Therefore,
the fluid responsible for inflation must be such that

p < −ρ
3
, (9)

i.e. must have a negative pressure. As a consequence, this fluid cannot be a
standard fluid, like a gas for instance, but must be somehow “exotic”. However,
this does not come as a surprise since inflation is supposed to take place
at very high energies. At those energies, the natural description of matter
is (quantum) field theory. As we are now going to demonstrate, it is quite
interesting to remark that the most simple example of a field theory can do
the job very well and “produce” the negative pressure which is necessary to
inflation. We now discuss this point in more details.

2.3 Implementing the Inflationary Hypothesis

The most simple implementation of the inflationary scenario is to assume that
matter is described by a scalar field ϕ(η) [1, 2]. This case is nothing but a
particular example of a perfect fluid. The corresponding action reads

S = −
∫

d4x
√−g

[
1
2
gµν∂µϕ∂νϕ+ V (ϕ)

]

. (10)

Then, the stress-energy tensor, which is defined by

Tµν = − 2√−g
δS

δgµν
, (11)

can be written as

Tµν = ∂µϕ∂νϕ− gµν

[
1
2
gαβ∂αϕ∂βϕ+ V (ϕ)

]

. (12)
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From this expression, it is clear that the scalar field is indeed a perfect fluid.
The energy density and the pressure are defined by T 0

0 = −ρ, T i
j = pδij and

we obtain

ρ =
1
2

(ϕ′)2

a2
+ V (ϕ), p =

1
2

(ϕ′)2

a2
− V (ϕ) . (13)

The conservation equation can be obtained either by re-deriving it from the
very beginning or just by inserting the previous expressions of the energy
density and pressure into (3). Assuming ϕ′ �= 0, this reproduces the Klein-
Gordon equation written in a FLRW background, namely

ϕ′′ + 2
a′

a
ϕ′ + a2

dV (ϕ)
dϕ

= 0 . (14)

The other equation of conservation expresses the fact that the scalar field
is homogeneous and, therefore, does not bring any new information. Finally,
a comment is in order about the equation of state. In general, there is no
simple link between ρ and p except when the kinetic energy dominates the
potential energy, where ω ≡ p/ρ � 1, i.e. the case of stiff matter or, on the
contrary, when the potential energy dominates the kinetic energy for which
one obtains ω � −1. This last case is of course very interesting since this leads
to an inflationary solution. We have thus identified the condition under which
inflation can occur: the potential energy must dominate the kinetic energy,
i.e.

V (ϕ) � 1
2

(ϕ′)2

a2
. (15)

We now turn to a systematic study of this regime.

2.4 Slow-roll Inflation

Since the kinetic energy to potential energy ratio and the scalar field accel-
eration to the scalar field velocity ratio are small, this suggests to view these
quantities as parameters in which a systematic expansion is performed. The
slow roll regime is controlled by the three (at leading order) slow-roll para-
meters defined by:

ε ≡ 3
ϕ̇2

2

(
ϕ̇2

2
+ V

)−1

= − Ḣ
H2

= 1 − H′

H2
, (16)

δ ≡ − ϕ̈

Hϕ̇
= − ε̇

2Hε
+ ε , ξ ≡ ε̇− δ̇

H
. (17)

The slow-roll conditions are satisfied if ε and δ are much smaller than one and
if ξ = O(ε2, δ2, εδ). It is also convenient to re-express the slow-roll parameters
in terms of the inflaton potential. Using the equations of motion in the slow-
roll approximation, one can show that
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ε � m2
Pl

16π

(
V ′

V

)2

, δ � −m
2
Pl

16π

(
V ′

V

)2

+
m2

Pl

8π
V ′′

V
, (18)

where, here, a prime denotes a derivative with respect to the scalar field.
The equations of motion, that is to say the Friedman equation and the

Klein-Gordon equation can be re-written exactly as

H2 =
κV

3 − ε ,
dϕ
dt

= − 1
(3 − δ)H

dV
dϕ

, (19)

from which one deduces that, if the slow-roll conditions are satisfied

H2 � κ

3
V (ϕ) + O (ε) ,

dϕ
dt

� − 1
3H

dV
dϕ

+ O (δ) . (20)

These equations are of course easier to analyze and solve than the original
ones.

Let us now analyze a concrete example. We choose the following class of
potentials

V (ϕ) =
3λn

8π
m4

Pl

(
ϕ

mPl

)n

, (21)

where n is a free parameter and λn the coupling constant. The factors that
show up into the definition of the potential have been chosen for future con-
venience. Let us first try to see under which conditions the slow-roll approxi-
mation is valid. We adopt the criterion ε < 1 (it is in fact ε� 1 and, strictly
speaking, ε < 1 only corresponds to the condition necessary in order to have
an accelerated expansion). This amounts to

ϕ > ϕend =
n

4
√
π
mPl . (22)

Of course, this constraint applies in particular to the initial value of the field.
We already conclude, that for this class of models, the values of the field must
be at least a few Planck mass. Let us be more precise and evaluate the total
number of e-folds during slow-roll inflation. It is given by the formula

NT = ln
(
aend

aini

)

� −κ
∫ ϕend

ϕini

dϕV (ϕ)
(

dV
dϕ

)−1

, (23)

from which one gets

NT =
4π
n

(
ϕini

mPl

)2

− n
4
. (24)

Let Nmin the minimum number of e-folds required in order to solve the prob-
lems of the hot big-bang model (we have seen before that Nmin � 60) then
one has

ϕini > mPl

√
n

4π

(
Nmin +

n

4

)
. (25)
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For n = 2, this gives ϕini � 3.1mPl and for n = 4, one obtains ϕini � 4.4mPl .
However, it is often argued that “natural” initial conditions (see the last article
in [2]) are such that V (ϕini) = m4

Pl
which amounts to

ϕini = mPl

(
8π
3

)1/n

λ−1/n
n � mPl , (26)

because, as we will discuss later one, the Cosmic Background Explorer
(COBE) normalization implies that the coupling constant is small. In this
case, the number of e-folds is a large number, much larger that the minimum
required. Of course, the fact that the value of the scalar field must be larger or
of the order of the Planck mass has led to many discussions about the model
building problem. In this review, we do not address this question. Details
about this issue can be found in [4, 5].

Let us now solve the equations of motions in the slow-roll approximation.
For the scalar field straightforward calculations lead to (n �= 4)

ϕ(t) = ϕini

[

1 − n(4 − n)
2

√
λn

8π

(
mPl

ϕini

)(4−n)/2

mPl(t− tini)

]2/(4−n)

. (27)

The last expression can also be expressed in terms of tend, the time at which
slow-roll inflation stops. One obtains

ϕ(t) = ϕini

{

1 − t− tini

tend − tini

[

1 −
(
ϕend

ϕini

)(4−n)/2
]}2/(4−n)

. (28)

The advantage of the above equation is to show that for t < tend the argument
between braces always remains positive and hence the whole expression well-
defined. A negative argument would simply signal the break-down of the slow-
roll approximation and, in this case, the above formula cannot be used.

Let us now turn to the scale factor. Integrating the first of (20) leads to

a(t) = aini exp
{

− 4π
nm2

Pl

[
ϕ2

0(t) − ϕ2
ini

]
}

. (29)

From this expression, one can also calculate the evolution of the scalar field
in terms of the number of e-folds N which is the natural time variable during
inflation. One gets

ϕ(N) = mPl

√(
ϕini

mPl

)2

− n

4π
N , (30)

from which one obtains the formula giving the evolution of the Hubble para-
meter during inflation
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H(N) = mPl

√
λn

[(
ϕini

mPl

)2

− n

4π
N

]n/4

. (31)

This equation is valid until N = NT and, in this regime, the above for-
mula is always well-defined. Indeed, (31) becomes meaningless at Nmax =
4π(ϕini/mPl)

2/n but Nmax > NT . The above equation has interesting conse-
quences for our understanding of inflation. It shows that the Hubble parameter
can evolve and change significantly during the slow-roll phase. Later on, we
will see that a quantity which plays an important role is the value of the
Hubble parameter when the scales of astrophysical interest today crossed out
the horizon during inflation. This happens 60 e-folds before the end of infla-
tion. This scale is constrained by the observations on the Cosmic Microwave
Background Radiation (CMBR) anisotropies to be H/mPl < 10−5. However,
this does not mean that the Hubble parameter has not been larger before,
especially if the total number of total e-folds is large, as it is the case for the
initial conditions discussed in (26). For instance, if we have a massive poten-
tial, n = 2, and ϕini = 100mPl then inflation starts with an initial Hubble
parameter of Hini � 10−3mPl but ends at Hend = mPl

√
λn [n/ (4

√
π)]n/2 �

0.28 × 10−5mPl after N � 62000 e-folds, where we have used λ2 � 10−10

(corresponding to a mass m � 10−5mPl). Therefore, in summary, it will be
important to keep in mind that the observations give indications about the
scale of inflation when the relevant scales crossed out the horizon during in-
flation but cannot, a priori, put constrains on the Hubble parameter in the
earliest phases of evolution. This situation is summarized in Fig. 1.

When the field reaches the value ϕend, slow-roll inflation stops and the
system enters a new regime that we now briefly describe.

2.5 Reheating

When the scalar field reaches the point where the slow-roll parameter ε � 1,
for which ϕ = ϕend, inflation stops and the field starts oscillating around its
minimum [6, 7]. In this regime, the system is governed by two time scales:
the Hubble time H−1 and the period of the oscillations around the minimum
(V ′′)−1 (here, a prime means derivative with respect to the field). The im-
portant point is that these two scales are very different. The frequency of the
oscillations is much larger than the Hubble rate, ωosci � V ′′ � H. The scalar
field obeys the Klein-Gordon equation which can be put under the following
form

dρ
dt

= −3Hϕ̇2 = −6H(ρ− V ) , (32)

where the relation ϕ̇2 = 2(ρ − V ) has been used. This equation can be time
averaged and one gets
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Fig. 1. Evolution of the various scales discussed in the text during inflation and
the subsequent radiation and matter dominated epochs. In particular, it is apparent
that the CMBR measurements only probe the inflationary model when the modes
of astrophysical interest today crossed out the horizon during inflation. The small
window shows a typical inflationary potential, see (21)

〈
dρ
dt

〉

= −〈
6H(ρ− V )

〉 � −6H
〈
ρ− V 〉

, (33)

where we have used the fact that the Hubble rate does not change during one
period of the oscillations. The right hand side of the equation above can be
evaluated as

〈
ρ− V 〉 ≡ 1

T

∫ T

0

(ρ− V )dt =
[∫ ϕm

−ϕm

√
ρ− V (ϕ)dϕ

] [∫ ϕm

−ϕm

dϕ
√
ρ− V (ϕ)

]−1

,

(34)
where ϕm is the value of the scalar field at the maximum of its oscilla-
tions. In order to obtain the previous relation, one has also utilized that
dt = dϕ/

√
2(ρ− V ). Then, one uses that over one period, ρ � V (ϕm) ≡ Vm

is a constant and one obtains
〈
ρ− V 〉 � γρ , (35)

where the number γ is defined by
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γ ≡



∫ ϕm

−ϕm

√

1 − V (ϕ)
Vm

dϕ





{∫ ϕm

−ϕm

[

1 − V (ϕ)
Vm

]−1/2

dϕ

}−1

=
n

n+ 2
, (36)

the last result being valid for potentials of the form V (ϕ) ∝ ϕn. Let us now
turn to the left hand side of (33). The term 〈dρ/dt〉 can be written as ∆ρ/T .
It can be expressed as a finite difference expression and one can rewrite it as ρ̇.
This is valid for time intervals much larger than the period of the oscillations.
Therefore, the equation governing the evolution of the energy density of the
field (33) can be rewritten as

ρ̇ = − 6n
n+ 2

Hρ⇒ ρ ∝ a−6n/(n+2) . (37)

Then, the scale factor is given by a(t) ∝ t(n+2)/(3n). For the massive case,
n = 2, the energy density evolves as in a matter-dominated epoch. This can
be easily understood since, in this case, the Klein-Gordon equation is exactly
the equation of an harmonic oscillator. In this situation, it is known that
〈ϕ̇2/2〉 = 〈V (ϕ)〉 which implies that the pressure vanishes.

So far, we have not taken into account the effect of particles creation.
Phenomenologically, it can be described by adding a term Γϕ̇ in the Klein-
Gordon equation which now reads

ϕ̈+ 3Hϕ̇+ Γϕ̇+
dV (ϕ)

dϕ
= 0 ⇒ dρ

dt
= − 2n

n+ 2
(3H + Γ )ρ. (38)

If we assume that the particles produced are very light in comparison with the
mass of the inflaton, these particles will be very relativistic. This means that
the equation of conservation of radiation should also be modified according to

dρr
dt

= −4Hρr + Γρ , (39)

so that the total energy is still conserved. Equation (38) can be easily inte-
grated and the solution reads

ρ(t) = ρosci

(
a

aosci

)−6n/(n+2)

exp
[

− 2n
n+ 2

Γ (t− tosci)
]

(40)

where t = tosci is the time at which the oscillations start (i.e. the time at which
the slow-roll period ends) and ρosci is the value of the scalar field energy density
at that time. The effect of the term Γϕ̇ is to multiply the result (37) by a
decreasing exponential factor. Equipped with this solution, we can solve (39)
and determine the evolution of ρr. If the scalar field energy density dominates
the radiation, as it is the case at the beginning of the reheating period, the
solution reads (using the fact that the scale factor is known in this regime,
see above)
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ρr(t) = Γtosciρosci

(
a

aosci

)−4(
n+ 2

2nΓtosci

)(n+8)/(3n)

exp
(

2n
n+ 2

Γtosci

)

×
[

γ

(
n+ 8
3n

,
2n
n+ 2

Γt

)

− γ
(
n+ 8
3n

,
2n
n+ 2

Γtosci

)]

, (41)

where the function γ(α, x) is the incomplete gamma function defined by
γ(α, x) ≡ ∫ x

0
e−ttα−1dt. In the above formula, we have assumed that, at the

end of the slow-roll epoch t = tosci, ρr � 0. For small values of the argument
x, the incomplete gamma function reduces to � xα/α. We define tRH ≡ Γ−1

and then we have x = 2nΓt/(n + 2) = 2n/(n + 2)(t/tRH) and for times
t > tosci � Γ−1, the argument of the incomplete gamma function is small. In
this limit, one obtains

ρr(t) � Γρoscit2osci
3n

(n+ 8)t

[

1 −
(
t

tosci

)−(n+8)/(3n)]

. (42)

We see that ρr starts to increase, reaches a maximum and then decreases.
When t approaches tRH , the previous approximation breaks down since the
argument of the incomplete gamma function is no longer small. However, for
order of magnitude estimates, we can try to push this approximation. At
t � tRH , we have ρr � Γρoscit2osci3n/[(n+ 8)tRH ] since the second term in the
square bracket in (42) is negligible. After thermalization, the energy density of
radiation takes the form ρr = g∗π2T 4/30. Using the fact that ρosci � H2

infm
2
Pl

(nothing but the Friedman equation) and that tosci � H−1
inf , one can deduce

the reheating temperature

TRH � 301/4

√
π
g
−1/4
∗

(
3n
n+ 8

)1/4

(ΓmPl)
1/2 . (43)

Then, from this temperature, the universe evolves in a standard radiation
dominated era. The remarkable feature of the previous equation is that it
does not depend on the scale of inflation Hinf but only on the decay rate Γ of
the inflaton. This means that whatever the scale of inflation is, the radiation
dominated era always starts at the same energy (at fixed decay rate) and that
the duration of the period of coherent oscillations can change quite a lot. The
number of e-foldings during this epoch can be evaluated as [since during this
epoch, the scale factor scales as ∝ t(n+2)/(3n)]

N � n+ 2
3n

ln
(
Hinf

Γ

)

. (44)

The previous considerations are valid if the life time of the inflaton is bigger
than the age of the universe at the end of inflation. Otherwise, there is no
period of coherent oscillations. In this case, the vacuum energy H2

infm
2
Pl

is
directly converted into radiation and the reheating temperature is
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TRH � 301/4

√
π
g
−1/4
∗ (HinfmPl)

1/2 . (45)

Finally, let us recall that the calculations above assume that the physical
quantities are time averaged and therefore that the time scales considered
are larger than the period of the oscillations. In Fig. 2, where the evolution
of the field versus the number of e-folds is displayed, we have integrated the
equations of motion numerically. This plot confirms our analytical estimates:
inflation consists of a phase of slow-roll followed by a phase of oscillations.
This concludes our study of the inflationary background.

Fig. 2. Evolution of the scalar field during slow-roll inflation and the reheating
phase (where the field oscillates) obtained by numerical integration of the equations
of motion. The potential is of the type of (21) with n = 2 and λ2 = (8π/6)× 10−10.
The initial conditions are such that ϕini 
 3mPl leading to NT 
 60 as confirmed
by the plot

3 Cosmological Perturbations

3.1 General Framework

It is an observational fact that the universe is not isotropic and homogeneous.
Therefore, if one wants to have an accurate description, it is clearly mandatory
to go beyond the FLRW model. On the other hand, it is also an experimental
fact that, in the early Universe, the deviations from the isotropy and from
the homogeneity were small (e.g. from the COBE measurement, δT/T �
10−5). This suggests a perturbative treatment. Therefore, the following metric
tensor [8] gives a refined description of our Universe
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γµν(η,x) = [gµν(η) + εhµν(η,x) + ε2�µν(η,x) + · · · ]dxµdxν , (46)

where gµν(η) is the standard FLRW metric introduced previously and repre-
sents the “background” (the parameter ε in the above equation should not be
confused with the first slow-roll parameter; they have nothing to do with each
other). The perturbed metric depends on x and this is the signature of the fact
that we now go beyond the cosmological principle. In order to be consistent,
the same expansion must be performed for the quantities describing matter.
For example, if there is a background scalar field ϕ(η), a refined description
of the scalar field can be expressed as

ϕ(η,x) = ϕ(η) + εδϕ(η,x) + ε2δ(2)ϕ(η,x) + · · · . (47)

The main goal of the theory of cosmological perturbations is to determine the
evolution of the perturbed quantities hµν and δϕ and, then, to use them in
order to calculate observable quantities. To find the behavior of the perturbed
quantities, one needs some equations of motion. Naturally, these equations
are taken to be the perturbed Einstein equations written order by order (we
assume that gravity is described by General Relativity). Therefore, we expand
the Einstein tensor and the stress-energy tensor according to

Gµν = G(0)
µν + εG(1)

µν + ε2G(2)
µν + · · · , Tµν = T (0)

µν + εT (1)
µν + ε2T (2)

µν + · · · , (48)

and then identify the terms of same order to obtain

G(0)
µν = κT (0)

µν , G(1)
µν = κT (1)

µν , G(2)
µν = κT (2)

µν , · · · . (49)

In the present context, we will restrict ourselves to the linear order in the
parameter ε.

Let us now try to describe the perturbed metric tensor in more details.
For any symmetric two-rank tensor, there is a theorem [9] which states that
hµν(η,x) can be decomposed as hµν(η,x) = h(S)

µν + h(V)
µν + h(T)

µν , where h(S)
µν is

constructed only from scalar functions, h(V)
µν is constructed only from three-

dimensional vectors with vanishing divergences and h(T)
µν is obtained only from

transverse and traceless three-dimensional tensors. These three types of per-
turbations are the scalar, rotational and tensorial fluctuations respectively.
Explicitly, the theorem implies that the unperturbed metric plus the per-
turbed metric can be expressed as [8]

ds2 = a2(η){−(1 + 2φ)dη2 + 2(∂iB − Si)dxidη + [(1 − 2ψ)δij + 2∂i∂jE

+∂jFi + ∂iFj + h(T)
ij ]dxidxj} , (50)

with Si and Fi being transverse vectors, i.e. ∂iSi = ∂iFi = 0 and h(T)
ij being

a transverse and traceless tensor, i.e. δijhij = 0, ∂jhij = 0. We see that the
scalar part of the metric depends on four unknown functions: φ, B, ψ and
E. The vector part depends on two vectors with vanishing divergence, i.e. Si
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and Fi and, finally, the tensor part depends on one transverse and traceless
tensor, namely h(T)

ij . At linear order, each type of perturbations decouple and,
as a consequence, can be treated separately.

In the specific case of inflation, one can show that vector perturbations
cannot be produced [8]. Hence, in the following, we will consider that only
scalar and tensor perturbations are present.

At this point, one should discuss a well-known problem of the theory of
cosmological perturbations: the gauge issue. A complete study of this question
can be found in [8, 10, 11] but, roughly speaking, it consists in the following.
There exist solutions to the perturbed Einstein equations which are coordi-
nates dependent, i.e. which can be removed by performing an infinitesimal
change of coordinates. These solutions are fictitious and should not be con-
sidered as physical. The following analogy may help to understand the prob-
lem [12]. Let us consider the four-dimensional FLRW manifold denoted V4 in
what follows. It can be embedded into a higher dimensional manifold, more
precisely into the five-dimensional Minkowski spacetime E5

1,4 whose metric is
ηAB where the indexes A and B runs from 0 to 4. A point in E5

1,4 is located
by its coordinates zA. An embedding is a map from V4 to E5

1,4: z
A = zA(xµ).

For a spatially flat FLRW spacetime endowed with Cartesian coordinates, the
embedding explicitly reads:

z0(η, x, y, z) =
1
2
a(η)(x2 + y2 + z2 + 1) +

1
2

∫ η a2(τ)
a′(τ)

dτ , (51)

z1(η, x, y, z) =
1
2
a(η)(x2 + y2 + z2 − 1) +

1
2

∫ η a2(τ)
a′(τ)

dτ , (52)

z2(η, x, y, z) = ax, z3(η, x, y, z) = ay, z4(η, x, y, z) = az . (53)

Therefore, the FLRW manifold can be viewed as a surface into the higher
dimensional spacetime E5

1,4. The metric of this surface can be calculated by
means of the well-known formula

gµν(η,x) = ηAB∂µz
A∂νz

B , (54)

and we can indeed check that this reproduces the metric of a spatially flat
FLRW universe. Let us now try to “deform” this manifold since this is what we
have in mind when we consider small perturbations around the background.
In the present context, a deformation consists of the following. If we consider
a point M in the manifold V4 located by its coordinates zA(xµ) in E5

1,4,
deforming the manifold means slightly displacing the point M in E5

1,4. This
means that the coordinates of this point are no longer zA but zA + εvA(xµ)
where ε is a small parameter. The vector vA(xµ) characterizes the deformation.
As a consequence, the new metric of V4 calculated by means of (54) reads

gµν = γµν + 2εηAB∂µz
A∂νv

B . (55)

However, all the vectors vA(xµ) do not represent a genuine deformation. In-
deed, if the following relation is satisfied
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zA(xµ) + εvA(xµ) = zA(xµ + εξµ) , (56)

then, clearly, the displacement is within V4 and does not correspond to a defor-
mation. This is merely a change of coordinates that should not be considered
as a physical deformation of V4. This gauge problem consists of identifying the
spurious modes and in removing them from the theory. To conclude this di-
gression, it should be emphasized that the link between the previous approach
and the theory of cosmological perturbations has never been worked out in
details. Therefore, an important warning is that it may well turn out that the
analogy used above cannot be applied completely to the theory studied here.

Having realized that there are non physical modes, the problem is now
to find a method to get rid of them. Following Bardeen’s seminal paper, an
efficient way is to work with combinations of the metric tensor components
which are invariant under a general change of coordinates (a “gauge” trans-
formation) and, hence, which cannot contain a spurious mode. For scalar
perturbations, the two following combinations [10]

Φ(η,x) ≡ φ+
1
a

[

a(B − E′)
]′
, Ψ(η,x) ≡ ψ − a

′

a
(B − E′) , (57)

are gauge invariant. They are called the Bardeen potentials. In what follows,
we will see that, in the simple case where matter is described by a scalar field,
one has in fact Φ = Ψ . This means that we have reduced the study of the
scalar perturbations to the study of a single quantity: the Bardeen potential
Φ(η,x).

The case of gravitational waves remains to be treated. In fact, it is easy to
realize that the gravitational waves are gauge-invariant by definition because
one cannot construct an infinitesimal change of coordinates with a tensor.
Therefore, one can safely work with the tensor h(T)

ij (η,x) introduced before.
We have identified the gauge invariant variables that describe the gravi-

tational sector. Our next move is to do the same but for the matter sector.
This can be done in general [10, 11] but, since we have inflation in mind, we
just consider the case of a scalar field. Then, one can show that

δϕ(gi)(η,x) ≡ δϕ+ ϕ′ (B − E′) , (58)

is the gauge-invariant perturbed scalar field.
Finally, we need a last ingredient. Since the spacelike sections are flat and

since we study the linear theory, it is very convenient to work in the Fourier
space. Indeed, because of the above properties, each Fourier mode evolve
independently (the mode coupling appearing at quadratic order only) and
it is sufficient to follow their time evolution. Therefore, we Fourier transform
the Bardeen potential and the gravitational waves according to

Φ(η,x) =
1

(2π)3/2

∫
dkΦ(η,k)eik·x , (59)

h
(T)
ij (η,x) =

1
(2π)3/2

∫
dk

∑

s=+,×
ps

ij(k)hs
T
(η,k)eik·x . (60)
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In the last equation, pij(k) is the transverse and traceless polarization tensor
satisfying the following properties: ps

ij(k)pijs′
(k) = 2δss′

. The symbols “+”
and “×” denote the two possible states of polarization of the gravitational
waves. Of course, we also Fourier transform the perturbed scalar field and
work with δϕ(gi)(η,k).

Having identified what the relevant degrees of freedom are, we now turn
to the question of establishing their equation of motion.

3.2 Equations of Motion

Since the Einstein equations are obviously gauge-invariant “by definition”, it
is clear that it is possible to express them in terms of gauge invariant quan-
tities only. We start with density perturbations. Lengthy but straightforward
calculations lead to (for a fixed Fourier mode k)

−3H(HΦ+ Ψ ′) − k2Ψ =
κ

2

{

−(ϕ′)2Φ+ ϕ′
[
δϕ(gi)

]′
+ a2

dV
dϕ
δϕ(gi)

}

, (61)

HΦ+ Ψ ′ =
κ

2
ϕ′δϕ(gi) , Φ− Ψ = 0 , (62)

(2H′ + H2)Φ+ HΦ′ + Ψ ′′ + 2HΨ ′ − 1
3
k2(Φ− Ψ) =

κ

2

{

−(ϕ′)2Φ

+ ϕ′
[
δϕ(gi)

]′
− a2 dV

dϕ
δϕ(gi)

}

. (63)

As announced, the two Bardeen potentials Φ and Ψ are equal. This is true as
long as there is no anisotropic stress. Despite the apparent complexity of this
system of equations, straightforward manipulations show that everything can
be reduced to the study of a single equation which reads

Φ′′ + 2
(

H− ϕ
′′

ϕ′

)

Φ′ +
[

k2 + 2
(

H′ −Hϕ
′′

ϕ′

)]

Φ = 0 . (64)

This equation is valid provided ϕ′ �= 0. In this case, for which the scalar field
plays the role of a cosmological constant, we have no density perturbations at
all, Φ = 0. This does not mean that the perturbed scalar field cannot fluctuate
in de Sitter spacetime (as a matter of fact, it does) but that, in this case, these
fluctuations do not couple to the fluctuations of the metric. Equation (64) can
be transformed in order to permit a more transparent physical interpretation.
If we consider the variables u and θ defined by

u ≡ 4
3
a2θ

H Φ , θ ≡ 1
a

(
ρ

ρ+ p

)1/2

=
√

3
H
aϕ′ =

√
3
2

1
a
√
γ
, (65)

then (64) can be expressed as:

u′′ +
(

k2 − θ
′′

θ

)

u = 0 . (66)
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The above equation can be viewed either as the equation of a parametric
oscillator, with a time-dependent frequency given by ω2(k, η) ≡ k2 − θ′′/θ,
or as a Schrödinger equation with the potential θ′′/θ. This effective potential
contains derivatives of the scale factor up to the fourth order. The typical
behavior of the solutions can be easily found. For modes k2 � θ′′/θ, the
variable u oscillate, u ∝ eikη, while for modes k2 � θ′′/θ the solution of (66)
may be expanded in powers of k2. At leading order we obtain

u(η,k) = A1(k)θ(η)
∫ η dτ

θ2(τ)
+A2(k)θ(η) . (67)

Since θ → ∞ for a → 0 in general, A1 is the arbitrary constant in front of
the regular (growing) mode and A2 a constant associated with the singular
(decaying) mode. We will see in the following that the variable u is in fact
not the most interesting for density perturbations. Quantum-mechanical con-
siderations, among others, will lead us to work with another variable. From
the above solution for u(η,k), we easily deduce the Bardeen potential in the
superhorizon regime. One obtains

Φ(η,k) � −A1(k)
H
2a2

∫ η

a2γ(τ)dτ +
A2(k)
2k2

H
a2
. (68)

For example, for a power-law behavior of the scale factor, i.e. a ∝ |η|1+β

with β ≤ −2 in order to have inflation, the “growing” mode turns out to be
constant in time, namely

Φ(η,k) � 3
2

1 + ω
5 + 3ω

A1(k) . (69)

For the de Sitter case, ω = −1 and we recover the fact that there no density
perturbations at all.

The equation of motion (64) has a first integral for modes that are much
larger than the Hubble scale, i.e. k/a� H. Following [8] we define

ζ ≡ 2
3
H−1Φ′ + Φ

1 + ω
+ Φ , (70)

which was introduced by Lyth [13] originally. Essentially, the quantity ζ is
the perturbation of the intrinsic curvature in the comoving gauge [13] and
is written −R in that reference. The equation of motion for the Bardeen
potential can be re-written as an expression for the first derivative of the
quantity ζ. One obtains [11]

1
H

dζ
dη

∝
(
k

H
)2

Φ . (71)

Of course, to derive this equation we have not assumed that the equation of
state parameter is a constant. Thus, ζ is constant in time for superhorizon
modes k/H � 1 since then ζ̇ = 0.
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The importance of the quantity ζ is due to the fact that this is a pure
geometrical quantity. Concretely, this means that the conservation law estab-
lished above in the case of a scalar field is in fact valid for any type of matter
(at least, provided that the so-called entropy perturbations do not play an im-
portant role). Therefore, ζ can be used as a “tracer” of density perturbations
regardless of the type of matter responsible for those fluctuations. In particu-
lar, it can be used to propagate the spectrum from the end of inflation (where
the Universe is dominated by a scalar field) to the radiation dominated era
(where the Universe is dominated by a relativistic fluid) without knowing the
details of the reheating process. Let us now study how the calculation works
in details. On superhorizon scales, the Bardeen potential is almost constant.
If we neglect its time derivation then the equation of motion for Φ and the
definition of ζ lead to

Φ � 3(1 + ωinf )
5 + 3ωinf

ζ � κϕ′

2H δϕ
(gi) . (72)

Using the equation of motion of the background, the above formula can be
put under the following form

ζinf (η,k) =
5 + 3ωinf

2
H

[
δϕ(gi)(η,k)

ϕ′

]

. (73)

Now, let us assume that we want to know the Bardeen potential in an era
dominated by a fluid with a given equation of state ω (concretely, we have
in mind ω = 1/3 or ω = 0 for the radiation or matter dominated epochs,
respectively). Writing the constancy of ζ, i.e. ζinf = ζω, one arrives at

Φω(η,k) � 3H
(

1 + ω
5 + 3ω

)[
δϕ(gi)(η,k)

ϕ′

]

, (74)

where we have used ωinf � −1. This equation is very important since it links
the primordial fluctuations of the scalar field to the fluctuations of the gravi-
tational potential during the subsequent phases of evolution of the Universe.

Let us now turn to gravitational waves. In order to obtain the equation
of motion, we must compute the perturbed Ricci or Einstein tensors for the
metric given in (50). One finds that δR0

0 = δR0
i = 0. This result is consistent

with the fact that the gravitational waves are transverse and traceless since
only the trace and/or the derivative of the metric tensor can appear in these
components. On the other hand, the component δRi

j , i �= j is non vanishing
and the leads to

δRi
j =

1
2a2

[
h(T)i

j

]′′
+
a′

a3

[
h(T)i

j

]′
− 1

2a2
∂k∂

kh(T)i
j = κδT i

j , (75)

where δT i
j represents the anisotropic pressure part of the perturbed stress-

energy tensor. For a perfect fluid (e.g. for a scalar field), it vanishes. However,
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it is important to keep in mind that, a priori, the gravitational waves are not
“independent” from the matter fluctuations and, hence, that they should be
considered on the same footing as density perturbations. This is conceptually
important because this means that it would be incorrect to argue that both
types of perturbations should be treated differently, in particular with respect
to the quantization of the cosmological perturbations.

Then, for the rescaled Fourier amplitude defined by µs
T
(η,k) ≡ a(η)

hs(η,k), the equation δRi
j = 0 can be re-written as [14]

(
µs

T

)′′ +
(

k2 − a
′′

a

)

µs
T

= 0 . (76)

This equation can be viewed either as the equation of a parametric oscillator,
i.e. an oscillator with a time-dependent frequency, ω2(η,k) ≡ k2 − a′′/a or as
a “time-independent” Schrödinger equation with a potential UT(η) = a′′/a.
Therefore, we obtain the same type of equation as for density perturbations.
However, it is also interesting to notice that the effective potential for tensor
perturbations involves the scale factor and its derivatives up to second order
only. This difference is especially important during the reheating phase.

As it was the case for density perturbations, it is clear that the solution
to the equation of motion possesses two regimes. If the wave number k is
such that k2 � UT , then the mode function oscillates, i.e. µT ∝ eikη. The
interaction with the barrier (if any) corresponds to the time kηt � 1 since, in
the inflationary phase, one has UT � 1/η2 (for a power-law scale factor; this
is also the case for slow-roll inflation, see below). This time is also, roughly
speaking, the time of Hubble radius exit. Indeed, the wavelength is given by
λ = 2πa(η)/k and the Hubble scale is H−1 = a/H. The condition λ = H−1

gives kηt � 1 since H � 1/η. The second regime is when the wave is below
the potential, k2 � UT . An approximate solution is

µs
T
(η,k) � Bs

1(k)a(η) +Bs
2(k)a(η)

∫ η dτ
a2(τ)

, (77)

where Bs
1(k) and Bs

2(k) are two constants which are a priori free. The first
term in (77) is the growing mode whereas the second term is the decaying
mode. This can be seen, for example, if we consider scale factors of the form
a(η) = �0|η|1+β . In this case, µs

T
� Bs

1(k)|η|1+β +Bs
2(k)|η|−β and for β � −2,

the first term goes to infinity while the conformal time goes to zero at the
end of inflation. Therefore, this is indeed the growing mode. In terms of the
amplitude hs(η,k) itself, one sees that the growing mode corresponds in fact
to a constant and hence is conserved on large scales. Somehow, hs(η,k) plays
for gravitational waves the same role as ζ for density perturbations.

Let us end this section with a comparison between density perturbations
and gravitational waves. Using the results obtained before, the tensor to scalar
amplitudes ratio today is given by

hω

Φω
∼ (1 + ωinf )

hinf

Φinf

. (78)
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Therefore, if we assume that hinf � Φinf , which is the case if the perturbations
are of quantum-mechanical origin, then we have hω/Φω � 1, i.e. scalar fluctu-
ations dominates over tensor fluctuations, because during inflation ωinf � −1.

The previous considerations also illustrate the limitations of the classical
approach. Without a theory of the initial conditions, i.e. without a prescription
to choose the k-dependent constants A1,2(k) for density perturbations and
B1,2(k) for gravitational waves, we cannot really go further. This will be one
of the main advantage of the quantum-mechanical version of the previous
theory: a natural choice for A1,2(k) and B1,2(k).

3.3 The Sachs-Wolfe Effect

The production and the amplification of small inhomogeneities in the early
Universe described above has several observational consequences. In this re-
view, we focus on one of them: the presence of small angular anisotropies in
the temperature of the Cosmic Microwave Background Radiation (CMBR),
at the level of δT/T � 10−5, detected for the first time by the COBE satel-
lite in 1992 [15]. These anisotropies are of utmost importance for the theory
of inflation because they allow us to check the predictions of this scenario
and/or to constrain the physics of the early Universe. We now turn to a rapid
discussion of this effect, a complete presentation being available in [16].

The Sachs-Wolfe effect [17] links the angular variations of the temperature
on the celestial sphere to the presence of cosmological fluctuations in the
early Universe. We have to calculate the change in the energy of the photons
propagating from the last scattering surface to Earth. This energy is given by
E = −γµνu

µkν , where kµ is the wave vector of the photon and uµ the velocity
of the observer. Let us first investigate this relation for the background.

Fundamental observers are observers who move with the cosmological flow.
A trajectory is given by the set xµ = xµ(s), where s is a affine parameter along
the line. The velocity along this curve is given by uµ ≡ dxµ/ds and satisfies
uµuµ = −1. For a fundamental observer, one has ui = 0 by definition and the
normalization of the four velocity implies that uµ = (1/a, 0) and uµ = (−a, 0).
Let us now study the propagation of a photon. If kµ ≡ dxµ/dλ is the wave
vector of a photon, then the path followed by this photon is such that

dkµ

dλ
+ Γµ

νρk
νkρ = 0 . (79)

The solution of this equation is the trajectory of the photon: xµ = xµ(λ). In
addition, we have the constrain kµkµ = 0, expressing the fact that the photon
follows a null geodesic. At zeroth order, this constraint gives δijkikj =

(
k0

)2.
In the non perturbed universe, (79) possesses the solutions k0 = C0/a2, where
C0 is a constant and ki = −C0ei/a2, where ei is a three vector such that
dei/dλ = 0. Taking the ratio of the wave vector components, we deduce that
dxi/dη = −ei. Finally, integrating this relation, we find the equation of the
trajectory in the unperturbed Universe
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xi = −ei(η − ηD) + xi
D
, (80)

where (ηD , x
i
D
) are the coordinates at detection of the photon. It does not

come as a surprise that the photons propagate along a straight line. On the
other hand, the energy is given by

E(η) =
C0

a(η)
, (81)

and, in fact, we just recover the well-known time evolution of the temperature
(which, as expected, does not depend on space for the unperturbed Universe).

Let us now turn to the Sachs-Wolfe effect itself. Essentially, this consists in
computing the energy of the photons at first order. In a perturbed Universe,
the most general observer possesses a velocity given by uµ + δuµ, where uµ

denotes the velocity of a fundamental observer calculated above and where we
assume that the components of δuµ are small with respect to this fundamental
velocity. The fact that the total velocity is normalized to −1 implies that
δu0 = −φ/a. We also write δui as δui ≡ vi/a, from which we deduce that
δui = avi + a∂iB. The trajectory of the photons can also be expanded as
xµ + δxµ, where xµ is the path of the photon in an unperturbed Universe
determined before and δxµ are the small corrections around the background
trajectory due to the presence of the fluctuations. In the same manner as
we did for the four-velocity, we can expand the wave vector of the photon
according to kµ + δkµ, where δkµ ≡ d (δxµ) /dλ. At first order, the variation
of energy can be expressed as

δE = −hµνu
µkν − gµνδu

µkν − gµνu
µδkν , (82)

which can be re-written as δE = C0φ/a + C0ei(∂iB + vi)/a + aδk0. In this
equation, the only unknown quantity is δk0 and we now establish its expres-
sion. Integrating the perturbed version of (79), one finds that

δk0 = − C0

a2(η)

∫ η

ηE

dτ
{

φ′ − 2ei∂iφ− eiej∂i∂jB +
1
2

[

−2ψδij + 2∂i∂jE

+h(T)
ij

]′
eiej

}

, (83)

where ηE is the conformal time at emission. Let us stress again that the
integration is performed along the unperturbed path of the photon. Putting
everything together, we finally obtain

ED

EE

=
aE

aD

{

1 +
[
φ+ ei (∂iB + vi)

]D

E
−

∫ ηD

ηE

dτ
[

φ′ − 2ei∂iφ− eiej∂i∂jB

+
1
2

(
−2ψδij + 2∂i∂jE + h(T)

ij

)′
eiej

]}

. (84)
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The above expression depends on the coordinates of emission and detection
of the photons. To go further, it is necessary to specify the conditions of
emission, that is to say the characteristics of the last scattering surface.
At zeroth order, the surface of last scattering has coordinates ηE = ηlss,
xi

E
= −ei(ηlss − ηD) + xi

D
where ηlss is fixed and corresponds to the redshift

zlss � 1100. The only dependence is now the vector ei and this corresponds
to different directions on the celestial sphere. However, in presence of pertur-
bations, emission occurs at different times and at different positions. In other
words, the time of emission is given by ηE = ηlss + δη(ηlss, xi

E
). The quantity

δη(ηlss, xi
E
) depends on our definition of the surface of emission. Let us assume

that this surface is such that the density of photons, ργ , is constant. Writing
this condition at first order gives δργ(ηlss, xi

E
)+ρ′γ(ηlss)δη(ηlss, xi

E
) = 0. Using

the conservation equation which implies that ρ′γ = −4Hργ , we arrive at

δη(ηlss, xi
E
) =

1
4H(ηlss)

δργ(ηlss, xi
E
)

ργ(ηlss)
. (85)

Therefore, the term a(ηE) in (84) should be written as

a(ηE) = a(ηlss) + H(ηlss)δη(ηlss, xi
E
) = a(ηlss) +

1
4
δγ(ηlss, xi

E
) , (86)

where δγ ≡ δργ/ργ is the density contrast. In the same manner, if we say
that detection takes place on a surface such that the baryons energy density
is constant, the factor a−1(ηR) should be written as a−1(ηD) = a−1(η0)[1 −
(1/3)δb(η0, xi

D
)] (the factor 1/3 comes from the equation of conservation but

now written for a fluid whose equation of state vanishes). Finally, (84) takes
the form

ED

EE

=
a(ηlss)
a(η0)

{

1 +
1
4
δγ(ηlss, xi

E
) − 1

3
δb(η0, xi

D
) +

[
φ+ ei(∂iB + vi)

]D

E

−
∫ η0

ηlss

dτ
[

φ′ − 2ei∂iφ− eiej∂i∂jB +
(

−ψδij + ∂i∂jE

+
1
2
h

(T)
ij

)′
eiej

]}

. (87)

Having established this important relation, we must now show that this ex-
pression is gauge-invariant. For this purpose, it is sufficient to express the ra-
tio of the energies at emission and detection only in terms of gauge-invariant
quantities. We have already described the gauge-invariant variables for the
gravity sector. For the variables describing matter, we only need the gauge-
invariant density contrast δg ≡ δ + ρ′/ρ(B − E′). Finally, one has to decom-
pose the three-velocity as vi = ∂iv and the gauge-invariant velocity can be
expressed as v(gi) ≡ v + E′. Let us also notice that the spatial derivatives
can be expressed in terms of time derivatives. Indeed, along a trajectory, one
has df/dη = ∂ηf − ei∂if from which we find ei∂if = ∂ηf − df/dη. Then,
straightforward calculations show that
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ED

EE

=
a(ηlss)
a(η0)

{

1 +
1
4
(δγ)g(ηlss, xi

E
) − 1

3
(δb)g(η0, xi

D
) + Φ(ηlss, xi

E
)

− Φ(η0, xi
D
) + ei∂iv

(gi)(η0, xi
D
) − ei∂iv

(gi)(ηlss, xi
E
)

+
∫ η0

ηlss

dτ
[

Φ′ + Ψ ′ − 1
2
h

(T)
ij

′eiej
]}

. (88)

We have thus proved the gauge invariance of the ratio ED/EE [18].
The Sachs-Wolfe effect is frequency independent. This means that the

shape of the black body is preserved at the perturbed level and this is why
a perturbed temperature is still a meaningful concept. If we define δT/T ≡
[δTD − TD ]/TD with TD = TEa(ηlss)/a(η0), we arrive at the final form of the
Sachs-Wolfe effect, namely

δT

T
=

(
δT

T

)(D)

+
(
δT

T

)(S)

+
(
δT

T

)(T)

, (89)

with,
(
δT

T

)(D)

= ei∂iv
(gi)(η0, xi

D
)

(
δT

T

)(S)

=
1
4
(δγ)g(ηlss, xi

E
) + Φ(ηlss, xi

E
) − ei∂iv

(gi)(ηlss, xi
E
)

+
∫ η0

ηlss

dτ (Φ′ + Ψ ′) ,

(
δT

T

)(T)

= −1
2

∫ η0

ηlss

dτ
∂

∂η
h

(T)
ij e

iej . (90)

Several comments are in order here. Firstly, we have discarded the terms
Φ(η0, xi

D
) and δ(gi)b (η0, xi

D
)/3 since they do not depend on the vector ei. Sec-

ondly, the first term [δT/T ](D) has its ei dependence fixed. This is just the di-
pole term due to our motion with respect to the frame of the CMBR. Thirdly,
the other terms are genuine fluctuations of primordial origin. As already men-
tioned, they have been discovered in 1992 by the COBE satellite.

Finally, let us conclude this section by establishing the expression of the
Sachs-Wolfe effect due to density perturbations on large scales. On these
scales, the Doppler term is negligible. The integrated Sachs-Wolfe effect is
also negligible because, on superhorizon scales, the Bardeen potential is ap-
proximatively constant, hence its derivative vanishes (see before). Therefore,
only the first two terms remain. One can show that they combine such that

(
δT

T

)(S)

� 1
3
Φ(ηlss, xi

E
) . (91)

This equation permits to compute the angular power spectrum in the COBE
regime, i.e. for large angular scales.
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4 Quantization of Cosmological Perturbations

We start this section with a discussion of the quantization of a free scalar
field. This constitutes the prototype of methods used in the sequel for the
cosmological perturbations.

4.1 Quantization of a Free Scalar Field

We consider the question of quantizing a (massless) scalar field in curved
space-time. The starting point is the following action

S = −1
c

∫
d4x

√−ggµν 1
2
∂µΦ∂νΦ , (92)

which, in a FLRW Universe, reads

S =
1
2c

∫
d4xa2(η)

(
φ′2 − δij∂iΦ∂jΦ

)
. (93)

It follows immediately that the conjugate momentum to the scalar field can
be expressed as

Π(η,x) =
a2

c
Φ′(η,x) . (94)

It is convenient to Fourier expand the field Φ(η,x) over the basis of plane waves
(therefore, here, we use explicitly the fact that the spacelike hypersurfaces are
flat). This gives

Φ(η,x) =
1
a(η)

1
(2π)3/2

∫
dkµk(η)eik·x . (95)

We have chosen to define the Fourier component with a factor 1/a(η) for
future convenience. Since the scalar field is real, this last relation allows us to
write µ∗k = µ−k. The next step consists in inserting the expression of Φ(η,x)
into the action. This gives

S =
1
2c

∫
dη

∫

R3+
d3k

[

µ′k
∗µ′k + µ′kµ

′
k
∗ − 2

a′

a
(µ′kµ

∗
k + µ′k

∗µk)

+
(
a′2

a2
− k2

)

(µkµ
∗
k + µ∗kµk)

]

. (96)

Notice that the integral over the wavenumbers is calculated in half of the
space in order to sum over independent variables only. Equipped with the
Lagrangian in the momentum space (that, in the following, we denote by L̄),
we can now go to the Hamiltonian formalism. The conjugate momentum to
µk is defined by the formula

pk ≡ δL̄
δµ′k

∗ =
1
c

(

µ′k − a
′

a
µk

)

. (97)
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One can check that the definitions of the conjugate momenta in the real
and Fourier spaces are consistent in the sense that they are linked by the
(expected) expression

Π(η,x) =
a(η)

(2π)3/2

∫
dkpkeik·x . (98)

We see that the definition of the conjugate momentum pk as the derivative
of the Lagrangian in the Fourier space with respect to µ′k

∗ and not to µ′k is
consistent with the expression of the momentum in the real space. Otherwise
the momentum Π(η,x) in real space would have been expressed in terms of
p∗k instead of pk.

One can also check that the Lagrangian leads to the correct equation of
motion. Since we have δL̄/δµ∗k = 1/(2c)[−2Hµ′k + 2(H2 − k2)µ′k], the Euler-
Lagrange equation d[δL̄/δµ′k∗]/dη− δL̄/δµ∗k = 0 reproduces the correct equa-
tion of motion for the variable µk, namely

d2µk

dη2
+

(

k2 − a
′′

a

)

µk = 0 , (99)

which is indeed the well-known result.
We are now in a position where we can go to the Hamiltonian formalism.

The Hamiltonian density, H̄, is defined by

H̄ ≡ pkµ
′
k
∗ + p∗kµ

′
k − L̄ , (100)

and we obtain

H̄ = c
(

pkp
∗
k +

k2

c2
µkµ

∗
k

)

+
a′

a
(pkµ

∗
k + p∗kµk) . (101)

One can check that the Hamilton equations

dµ∗k
dη

=
∂H̄
∂pk

= cp∗k +
a′

a
µ∗k ,

dp∗k
dη

= − ∂H̄
∂µk

= −a
′

a
p∗k − k

2

c
µ∗k , (102)

lead to the correct equation of motion given by (99).
As a preparation to canonical quantization, we now introduce the normal

variable αk [19] defined by

αk(η) ≡ N(k)µk + ic
M(k)
k
pk , (103)

where, for the moment, the functions N(k) and M(k) are free but will be
specified later on. In terms of the normal variables, the scalar field and its
conjugate momentum can be expressed as

Φ(η,k) =
1
a(η)

1
(2π)3/2

∫
dk

2N(k)
[
αk(η)eik·x + α∗k(η)e−ik·x] , (104)

Π(η,x) =
a(η)

(2π)3/2

∫
dk

k

2icM(k)
[
αk(η)eik·x − α∗k(η)e−ik·x] . (105)
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We are now ready to quantize the system. So far, we were dealing with a
relativistic field theory and only the constant c appeared in the equations.
Now, the constant �, which fixes the amplitude of the fluctuations shows
up. Concretely, the quantization is carried out by requiring that Φ(η,x) and
Π(η,x) become quantum operators satisfying the usual commutation relation,
namely

[Φ̂(η,x), Π̂(η,y)] = i�δ3(x − y) . (106)

The normal variable αk(η) is promoted to an operator ck(η). We choose the
commutation relation to be [ck(η), c†p(η)] = Cδ(k−p). In the last expression,
C is a free dimensionless constant. Notice that the commutation relation is
time-independent. Then, the expressions of N(k) and M(k) are fully deter-
mined. Let us see in more details how the calculation proceeds. The commu-
tator is given by

[Φ̂(η,x), Π̂(η,y)] =
iC

4c(2π)3

∫
d3k

k

N(k)M(k)

[
eik(x−y) + e−ik(x−y)

]
. (107)

We see that, in order to produce a Dirac function δ3(x − y) which is neces-
sary in order to reproduce the relation given by (106) by integration of the
exponentials, the term k/(NM) must be k-independent. The link between
the functions N(k) and M(k) is therefore determined. Let us call D the term
k/(NM). Then the result reads

[Φ̂(η,x), Π̂(η,y)] =
iC

4c
× 2Dδ3(x − y) . (108)

As a consequence we have CD = 2�c. As expected, the normalization is given
by a combination of � and c. In the following, we will adopt the convenient
choice C = 1.

Everything has been fixed but the function N(k). This function is chosen
by means of the following considerations. The energy of a scalar field is given
by the formula

Ê =
∫

d3x
√
−(3)gρ̂ =

∫
d3x

√
−(3)g

1
2a2

(
Φ̂′2 + δij∂iΦ̂∂jΦ̂

)
(109)

=
∫

d3x
√
−(3)g

1
2a2

[( c
a2
Π̂
)2

+ δij∂iΦ̂∂jΦ̂

]

, (110)

where we have used the expression of the conjugate momentum. In this ex-
pression, the determinant of the metric is the determinant of the spatial part
of the metric (including the factor a). We can now insert the expression of the
operators Φ̂ and Π̂ in the above equation giving Ê. One finds

Ê =
1
2a

∫
d3k

1
4

[
k2

M2(k)

(
−ckc−k + ckc

†
k + c†kck − c†kc†−k

)

+
k2

N2(k)

(
ckc−k + ckc

†
k + c†kck + c†kc

†
−k

)]

. (111)
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Our criterion is to put “half of a quanta in each mode”. Technically, this
means that we would like the energy to take the following suggestive form

Ê =
∫

d3k
�ω(η)

2

(
ckc

†
k + c†kck

)
, (112)

where ω(η) = kc/a(η) is the physical frequency. We see that the only way to
cancel the unnecessary terms in (111) is to have N(k) =M(k). Together with
the relation established previously, D = 2�c, this gives N2(k) = k/(2�c). As
a consequence, The scalar field operator now reads

Φ̂(η,x) =

√
�c

a(η)
1

(2π)3/2

∫
dk√
2k

[
ck(η)eik·x + c†k(η)e−ik·x

]
. (113)

Everything is now fixed. The expression of the scalar field operator contains
no unspecified factor. Even the amplitude is fixed and is given by the factor√

�c.
We can now calculate the Hamiltonian operator. Using (101) one obtains

Ĥ =
1
2

∫

R3
d3k

[

�k
(
ckck

† + c−k
†c−k

)− i�a
′

a

(
ckc−k + c−k

†ck
†)
]

, (114)

where it is important to notice that the integral is calculated in R3 and not in
R3+. Let us analyze this Hamiltonian. The first term is the standard one and
represents a collection of harmonic oscillators. The most interesting part is the
second term. This term is responsible for the quantum creation of particles in
curved spacetime. It can be viewed as an interacting term between the scalar
field and the classical background. The coupling function ia′/a is proportional
to the derivative of the scale factor and therefore vanishes in flat spacetime.
From the structure of the interacting term, i.e. in particular the product of
two creation operators for the mode k and −k, we can also see that we have
creation of pairs of quanta with opposite momenta during the cosmological
expansion.

We can now calculate the time evolution of the quantum operators (we
are here in the Heisenberg picture). Everything is known if we can determine
what the temporal behavior of the creation and annihilation behavior is. The
temporal behavior is given by the Heisenberg equations which read

dck
dη

= − i
�
[ck, Ĥ] ,

dck†

dη
= − i

�
[ck†, Ĥ] . (115)

Inserting the expression of the Hamiltonian derived above, we arrive at the
equations

dck
dη

= kcsk + i
a′

a
c−k

† ,
dck†

dη
= −kcsk† − ia

′

a
cs−k . (116)

This system of equations can be solved by means of a Bogoliubov transfor-
mation and the solution can be written as
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ck(η) = uk(η)ck(ηini) + vk(η)c−k
†(ηini) , (117)

ck
†(η) = u∗k(η)ck†(ηini) + v∗k(η)c−k(ηini) , (118)

where ηini is a given initial time and where the functions uk(η) and vk(η)
satisfy the equations

i
duk(η)

dη
= kuk(η) + i

a′

a
v∗k(η) , i

dvk(η)
dη

= kvk(η) + i
a′

a
uk(η) . (119)

In addition, these two functions must satisfy |uk|2 − |vk|2 = 1 such that
the commutation relation between the creation and annihilation operators is
preserved in time. A very important property is the initial values of the two
functions are fixed and, from the Bogoliubov transformation, read

uk(ηini) = 1 , vk(ηini) = 0 . (120)

At this point, the next move is to establish the link between the formalism
exposed above and the classical picture. For this purpose, it is interesting to
establish the equation of motion obeyed by the function uk + v∗k. Straightfor-
ward manipulations from (119) lead to

(uk + v∗k)′′ +
(

k2 − a
′′

a

)

(uk + v∗k) = 0 . (121)

Therefore, the function uk + v∗k obeys the same equation as the variable µk.
This is to be expected since, using the Bogoliubov transformation, the scalar
field operator can be re-written as

Φ̂(η,x) =

√
�c

a(η)
1

(2π)3/2

∫
dk√
2k

[

(uk + v∗k) (η)ck(ηini)eik·x

+ (u∗k + vk) (η)c†k(ηini)e−ik·x
]

. (122)

If we are given a scale factor, we can now calculate completely the time evolu-
tion of the perturbations by means of the formalism presented above. Let us
stress again that the quantization procedure has completely fixed the overall
amplitude of the field. Indeed, the field is normalized to

√
�c while the “mode

function” uk + v∗k has initially an amplitude of one.
Let us now calculate the two-point correlation function in the vacuum

state. One gets

〈
0
∣
∣
∣Φ̂(η,x)Φ̂(η,x + r)

∣
∣
∣ 0

〉
=

�c

4π2

∫ +∞

0

dk
k

sin kr
kr

k2

∣
∣
∣
∣
uk + v∗k
a(η)

∣
∣
∣
∣

2

. (123)

If we assume that the scale factor is given by a power-law of the conformal
time, a(η) = �0(−η)1+β , where β ≤ −2 is a free a parameter and �0 a constant
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with the dimension of a length, then the solution of (121) with the initial
conditions given by (120) reads

(uk + v∗k) (η) =
√
π

2
ei(kηini−πβ/2)

√
−kηH(1)

−β−1/2 (−kη) , (124)

where H(1) is a Hankel function of first kind. From, this solution, it is easy to
calculate the spectrum on large angular scales (kη → 0)

�c

4π2
k2

∣
∣
∣
∣
uk + v∗k
a(η)

∣
∣
∣
∣

2

=
�c

4π2

f(β)
�20
k4+2β , (125)

where f(β) ≡ π−1
[
2−1−βΓ (−β − 1/2)

]2. In particular, if β = −2, this case
corresponding to de Sitter spacetime for which the Hubble constant is strictly
constant, one has �0 = c/Hinf and the spectrum reads

�

c

(
Hinf

2π

)2

(126)

i.e. is scale-invariant (which means that it does not depend on the wavenum-
ber). Of course, if β �= −2 then the spectrum is scale dependent.

The above result leads us to a first attempt to quantize cosmological per-
turbations [20]. Using (73) and taking into account the fact that ωinf � −1
and H/ϕ′ � κ/(2ε) (recall that ε is the first slow-roll parameter), one obtains
for the spectrum of the “tracer” ζk

Pζ ≡ k3ζ2k � κ

2ε
k3

[
δϕ

(gi)
k

]2

. (127)

The question is now how should we calculate
[
δϕ

(gi)
k

]2

? Historically, the idea
was to consider that the matter fluctuations (i.e. fluctuations in the scalar
field) are quantized while the fluctuations in the gravitational field remain
classical. Based on this guess, one can used the trick which consists in replacing

[
δϕ(gi)

]2

→
〈

0
∣
∣
∣
∣

[
δϕ̂(gi)

]2
∣
∣
∣
∣ 0

〉

(128)

or, in the Fourier space,
[
δϕ

(gi)
k

]2

→ �H2
inf
/(4π2c). This gives for the spectrum

of density perturbations

Pζ ≡ k3ζ2k � �G

c5
H2

inf

πε
. (129)

As expected the three fundamental constants, G, c and � participate to the
final expression. We have kept them in order to be able to trace back their
origin. The combination which appears here is the Planck time squared as
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it has to be since ζk is a dimensionless quantity. In natural units, the above
spectrum is just H2

inf
/(πεm2

Pl
). Several remarks are in order at this point.

Firstly, as we will see, this trick provides us with the exact result. Secondly,
it seems is that there is no way to rigorously justify the replacement (128).
The reason is that matter, i.e. δTµν , is treated quantum-mechanically, while
geometry, i.e. δGµν , is still considered to be classical, despite the fact that
both are linked by the perturbed Einstein equations, δGµν = κδTµν . One
could think that a semi-classical equation

δGµν = κ
〈
0
∣
∣
∣δT̂µν

∣
∣
∣ 0

〉
, (130)

could do the job but in fact one easily realizes that this cannot be the case
because δTµν being linear in δϕ (it is of course quadratic in the scalar fields,
but at linear order we have terms like ϕ′δϕ′), we have in fact 〈0|δT̂µν |0〉 = 0
due to 〈0 |δϕ̂| 0〉 = 0. Therefore, (130) is in fact inconsistent in the present
context. Thirdly, it would be dangerous to base the physical interpretation
of (129) on the above method arguing that it gives the correct result. Here,
we emphasize that a convincing physical interpretation should be based on a
consistent framework. We can try the following analogy. The correct equation
for the energy levels of an Hydrogen atom, En ∝ 1/n2, has been obtained for
the first time by means of the so-called Bohr’s model. This model was devel-
oped before a consistent framework for Quantum Mechanics become available.
But, it is clear that, today, nobody would try to use Bohr’s framework to in-
terpret the formula for En. We are of the opinion that the situation for the
cosmological perturbations is similar. Fourthly, the correct way to proceed is
to treat the fluctuations in the geometry and in the scalar field on an equal
footing. This amounts to “quantize” both sides of the Einstein equations and
to write [8]

δĜµν = κδT̂µν . (131)

The consequence is of course of utmost importance: the metric operator hµν

should now be considered as a quantum operator, hµν → ĥµν . In other words,
we have now to deal with the quantum-mechanical nature of the gravitational
field, i.e. with quantum gravity (at the linearized level). We now turn to this
question.

4.2 Quantization of Density Perturbations

The total action of the system is given by

S = − c3

16πG

∫
d4x

√−gR− 1
c

∫
d4x

√−g
[
1
2
gµν∂µϕ∂νϕ+ V (ϕ)

]

. (132)

If we perturb this action up to second order in the metric perturbations and
in the scalar field fluctuations (this is necessary if we want the variation of
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this action to reproduce the first order equations of motion) one finds, despite
a very long and tedious calculation, that the result is delightfully simple,
namely [8]

(2)δS =
1
2c

∫
d4x

[

(v′)2 − δij∂iv∂jv +
z′′
S

zS
v2

]

, (133)

with

v(η,x) ≡ a
[

δϕ(gi) +
ϕ′

HΦ
]

. (134)

This is nothing but the action for a scalar field with a time-dependent mass.
The constant G does not appear explicitly in the above action because it
has been absorbed via the background Einstein equations. It is interesting to
notice that the natural variable is not Φ neither ζ but v. It is not a surprise that
the system is characterized by a single quantity since gravitational fluctuations
are described by Φ and matter fluctuations by δϕ(gi) but are linked by the
perturbed Einstein equations. Therefore, only one degree of freedom is left.
The link between v and the “tracer” ζ is given by

ζ =
√
κ

2
v

a
√
ε
. (135)

Finally, the quantity zS is given by zS =
√
κ/2aϕ′/H = a

√
ε because, from

the background Einstein equations, one has κ(ϕ′)2 = 2H2ε.
At this point, the procedure of quantization follows exactly the one pre-

sented in the last subsection. The quantity v(η,x) becomes a quantum oper-
ator v̂(η,x) = a

[
δϕ̂(gi) + (ϕ′/H) Φ̂

]
, the expression of which can be written

as

v̂(η,x) =

√
�c

(2π)3/2

∫
d3k√

2k

[

(uk + v∗k)(η)ck(ηini)eik·x

+ (u∗k + vk)(η)c†k(ηini)e−ik·x
]

. (136)

As announced, the fluctuations of the metric tensor are now quantized: techni-
cally, the Bardeen potential Φ(η,k) is now a quantum operator Φ̂(η,x) which
explicitly appears into the expression of v̂(η,x). Notice also that the un-
certainty principle has completely fixed the overall amplitude of the quan-
tum perturbations since the initial conditions are fixed by uk(ηini) = 1 and
vk(ηini) = 0. The equation of motion reads

(uk + v∗k)′′ +
(

k2 − z
′′
S

zS

)

(uk + v∗k) = 0 . (137)

The physical meaning of the initial conditions are as follows: initially, we
choose the state which is empty of “particles” from the point of view of a
local comoving observer at the initial time ηini. This state |0〉 is defined by



230 J. Martin

ck|0〉 = 0. Since, due to the time dependence of the background, there is a
nontrivial mixing between positive and negative frequencies, this state is in
general not the vacuum at later times.

We are now in a position to calculate the power spectrum of the quantum
operator ζ̂. One gets

〈
0
∣
∣
∣ζ̂(η,x)ζ̂(η,x + r)

∣
∣
∣ 0

〉
=

�cκ

8π2z2
S

∫ +∞

0

dk
k

sin kr
kr

k2|uk + v∗k|2 , (138)

from which we easily deduce the expression of the power spectrum

k3Pζ =
�cκ

8π2
k2

∣
∣
∣
∣
uk + v∗k
zS(η)

∣
∣
∣
∣

2

. (139)

In order to compare this result with (129), we can evaluate the spectrum
for power-law inflation where an exact solution of the equation of motion is
available. Indeed, for a(η) = �0(−η)1+β , the function ε is a constant, hence
one has z′′

S
/zS = a′′/a. This means that the Hankel function of (124) is also

solution of (137). Then, straightforward calculations show that

k3Pζ =
1
πε

�G

c3�20
f (β) k2β+4 . (140)

If β is close to −2 then �0 � c/Hinf and one recovers exactly the result of (129).
As expected, the Planck length “naturally” appears in the above result.

4.3 Quantization of Gravitational Waves

The quantization of gravitational waves proceeds exactly along the same lines
as before. Therefore, in this subsection, we only review briefly the main results.
The starting point is the Einstein-Hilbert action that we expand to the second
order. One gets (in natural units) [8]

(2)δS =
m2

Pl

64π

∫ [
(hi

j)′(hj
i)′ − ∂k(hi

j)∂k(hj
i)
]
a2(η)d4x . (141)

In fact, the action can be re-written as

(2)δS2 = −m
2
Pl

16π

∑

s=+,×

∫
d4x

1
2
gµν∂µh

s∂νh
s , (142)

where the quantity hs(η,x) is defined by

hs(η,x) ≡ 1
a(η)

1
(2π)3/2

2∑

s=+,×

∫
dkµs

T
(η,k)eik·x . (143)

Therefore, the action of gravitational waves is equivalent to the action of two
decoupled scalar fields (corresponding to the two states of polarization). One
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can then follow the method presented before. The quantum perturbed metric
operator can be written as

ĥij(η,x) =
4
√
π

mPla(η)
1

(2π)3/2

∑

s=+,×

∫
dk√
2k
ps

ij(k)
[

(us
k + vs∗

k )(η)csk(ηini)eik·x

+ (us∗
k + vs

k)(η)cs†k (ηini)e−ik·x
]

, (144)

where the function (us
n +vs

n
∗)(η) obeys (76). Finally, the two-point correlation

function of the perturbed metric operator can be expressed as
〈
0
∣
∣
∣ĥij(η,x)ĥij(η,x + r)

∣
∣
∣ 0

〉

=
16

πm2
Pl
a2(η)

∫ +∞

0

dk
k

sin kr
kr

k2|us
k + vs

k
∗|2 , (145)

from which we deduce that the power spectrum of the gravitational waves is
given by

k3Ph(k, η) =
16
πm2

Pl

k2

∣
∣
∣
∣
us

k + vs
k
∗

a(η)

∣
∣
∣
∣

2

. (146)

If we had decided to keep the standard units, the factor 1/m2
Pl

in the above
result would have obviously read �G/c3, i.e. the Planck length squared.

4.4 The Power Spectra in the Slow-roll Approximation

We have established the expression of the scalar and tensor power spectra
and calculated these quantities for power-law inflation. However, as discussed
at the beginning of this review article, the most interesting physical situation
occurs when the slow-roll approximation is valid. As discussed previously, the
only thing we need to do in order to compute the spectrum is to solve the
equation of a parametric oscillator,

µ′′ +
[
k2 − U (η)

]
µ = µ′′ +

[

k2 − z
′′

z
(η)

]

µ = 0 , (147)

where µ is uk + v∗k either for scalar or tensor perturbations and the effective
potential z′′

S
/zS or a′′/a, i.e. z = zS or z = a(η). As already mentioned,

on subhorizon or superhorizon scales, this equation can be solved regardless
of the detailed form of the scale factor. The solutions are exp (−ikη) and
z(η) + z(η)

∫ η dτz−2(τ) respectively. However, in order to obtain a reliable
solution, one also needs to know the form of the solution in the regime k2 �
U(η), that is to say when the corresponding scales crossed out the horizon
during inflation.

Let N∗ (λ) be the number of e-folds before the end of inflation at which
the scale λ exits the horizon. We have
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N∗(λ) � ln
(
λ

�H

)

+
[

log10

(
Hinf

mPl

)

− log10

(
TRH

mPl

)

+ 29
]

× ln 10 . (148)

If we take the fiducial values Hinf � 1014GeV and TRH � Minf � 1016.5GeV
then N∗ � 60 for the Hubble scale today, i.e. λ � �H , see also Fig. 1. A scale
characterized by its wave-number k corresponds to an angle θ on the celestial
sphere of about k � 1/(2�Hθ). Given the present CMBR experiments, this
means that we probe in fact the scales �H < λ < 10−3�H . The smallest scale in
this interval crossed out the horizon � 46 e-folds before the end of inflation.
This means that the time taken by the the scales of astrophysical interest
today to cross the horizon during inflation corresponds to ∆N � 7. Therefore,
we need an accurate description of the effective potential U(η) only during 7
e-folds, see Fig. 1.

In the slow-roll approximation, the effective potentials for scalar and tensor
read at linear order

US(η) =
2 + 6ε− 3δ

η2
, UT(η) =

2 + 3ε
η2

. (149)

Moreover, the equations of motion for ε and δ can be written as:

dε
Hdt

=
dε
dN

= 2ε(ε− δ) , dδ
Hdt

=
dδ
dN

= 2ε(ε− δ) − ξ . (150)

From these equations, one sees that typically O (
ε2
)
∆N � 1 for∆N � 7 and,

therefore, the slow-roll parameters can be considered as constant during the
exit of the physical modes. This simplifies the problem drastically since then
the equations of motion in the regime k2 � U(η) can be solved in terms of
Bessel functions whose orders depend on the slow-roll parameters. A detailed
calculation can be found in [21] and, here, we just give the result

k3Pζ =
H2

πεm2
Pl

[

1 − 2 (C + 1) ε− 2C (ε− δ) − 2 (2ε− δ) ln
k

k∗

]

, (151)

k3Ph =
16H2

πm2
Pl

[

1 − 2 (C + 1) ε− 2ε ln
k

k∗

]

, (152)

where C is a numerical constant, C � −0.73 and k∗ a scale called the “pivot
scale”. We see that the amplitude of the scalar power spectrum is given by
a scale-invariant piece, H2/(πεm2

Pl
) that we had already guessed before, plus

logarithmic corrections the amplitude of which is controlled by the slow-roll
parameters, i.e. by the microphysics of inflation. It is important to notice
that H is the value of the Hubble parameter during the 7 e-folds where the
scales of astrophysical interest crossed out the horizon, see Fig. 1. As already
mentioned at the end of Sec. (2.4) this can be different from the value of the
Hubble parameter at the beginning of inflation. The above remarks are also
valid for tensor perturbations. The ratio of tensor over scalar is just given by
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k3Ph

k3Pζ
= 16ε . (153)

This means that the gravitational are always sub-dominant and that, when
we measure the CMBR anisotropies, we essentially see the scalar modes. This
is rather unfortunate because this implies that one cannot measure the energy
scale of inflation since the amplitude of the scalar power spectrum also depends
on the slow-roll parameter ε. Only an independent measure of the gravitational
waves contribution could allow us to break this degeneracy. On the other hand,
the spectral indexes are given by

nS =
ln k3Pζ

d ln k

∣
∣
∣
∣
k=k∗

= 1 − 4ε+ 2δ , nT =
ln k3Ph

d ln k

∣
∣
∣
∣
k=k∗

= −2ε . (154)

As expected, the power spectra are always close to scale invariance and the
deviation from it is controlled by the magnitude of the two slow-roll parame-
ters. Finally, at the next-to-leading order there is no running of the spectral
indexes since they are in fact second order in the slow-roll parameters.

5 Comparison with Observations

In this section, we briefly discuss the impact of the recent Wilkinson Mi-
crowave Anisotropy Probe (WMAP) measurements on inflation [22]. We
have seen previously that the presence of cosmological perturbations causes
anisotropies in the CMBR (the Sachs-Wolfe effect) and we have established
the link between δT/T and the metric fluctuations, see (89) and (91). The
fact that the metric fluctuations are described by a quantum operator has an
immediate consequence: δT/T should be considered as a quantum operator
as well. It is convenient to expand this operator on the celestial sphere, i.e.
on the basis of spherical harmonics

δ̂T

T
(e) =

+∞∑

�=2

m=�∑

m=−�

â�mY�m(θ, ϕ) . (155)

The next step is to calculate the two-point correlation function of temperature
fluctuations. One gets

〈

0

∣
∣
∣
∣
∣
δ̂T

T
(e1)

δ̂T

T
(e2)

∣
∣
∣
∣
∣
0

〉

=
+∞∑

�=2

(2�+ 1)
4π

C�P� (cos γ) , (156)

where P� is a Legendre polynomial and γ is the angle between the two vectors
e1 and e2. The C�’s are the multipole moments and have been measured with
great accuracy by the WMAP experiment [22].

A remark in passing is in order at this point. As a matter of fact, what
has been measured by the WMAP satellite is the correlation function
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〈
δT

T
(e1)

δT

T
(e2)

〉

, (157)

where the bracket denotes spatial average over the celestial sphere and not
ensemble average as in (156). Going from one to another is not trivial and,
in fact, involves profound questions which can even go as further as problems
linked to the interpretation of Quantum Mechanics! (another related question
is the problem of the “classicalization” of the quantum perturbations, see [23]).
In order to check that the predictions of (156) are verified or not, one should
repeat the measurement of the CMBR map many times and see whether the
result converges toward the theoretical prediction. However, one cannot do
that because we only have at our disposal one realization, i.e. one Universe or
one CMBR map. Facing this situation, the usual strategy is to construct an
unbiased estimator of the quantity that we want to measure (the correlation
function or the multipole moments) with the minimum possible variance so
that it is very probable that the outcome of one realization is closed to the
mean value [24]. Unfortunately, the variance cannot be zero (in this case only
one realization would be enough to estimate the result) and one can show
that this is linked to the fact that a stochastic process on a sphere cannot
be ergodic [24]. This variance is called the “cosmic variance” and is generally
large on large scales. More details on this question can be found for instance
in [24].

On large scales, i.e. for small �, one can use (91) to find an explicit expres-
sion of the multipole moments. One gets

C� =
4π
25

∫ +∞

0

dk
k
j2� (k)k3Pζ , �� 20 , (158)

where j� is a spherical Bessel function of order �. Using (151) for density
perturbations (since they are dominant) and neglecting the logarithmic cor-
rections (which amounts to consider that the spectrum is scale-invariant), we
obtain

C� =
2H2

25εm2
Pl

1
�(�+ 1)

, �� 20 . (159)

Therefore, a scale invariant spectrum implies that, on large scales, the quan-
tity �(� + 1)C� is a constant. In order to calculate the inflationary multipole
moments C� for any � one must use a numerical code, for instance the CAMB
code [25]. Typically, one gets a plateau and then acoustic oscillations. Here
we do not treat this question but the details can be found in [16].

The satellites COBE and WMAP have measured the quantity Q/T ≡√
5C2/(4π) where T � 2.7K and have found Q � 18 × 10−6 K. Moreover,

recent analysis [26] of the WMAP data have been able to put a constraint
on the value of the slow-roll parameter ε. It was found that ε < 0.032. This
allows us to put a constraint on the Hubble parameter at horizon crossing.
One finds
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H2
inf

m2
Pl

= 60πε
Q2

T 2
⇒ Hinf

mPl

< 1.6 × 10−5 . (160)

This also puts a constraint on the amount of gravitational waves. In [26], the
following result has been obtained

CT
10

CS
10

< 0.3 , (161)

that is to say the contribution of gravitational waves is already constrained
to be less than 30% of the total contribution.

We conclude this part by a summary of the main observational predic-
tions of single field inflation: (i) The universe is spatially flat: Ω0 = 1± 10−5;
(ii) The spectrum of density perturbations is scale invariant (Harrison–
Zeldovich spectrum) plus logarithmic corrections which are model dependent,
i.e. nS = 1+O(ε, δ); (iii) There is a nearly scale invariant background of grav-
itational waves, i.e. nT = O(ε); (iv) The statistical properties of the CMB
anisotropies are Gaussian, i.e. everything is characterized by the power spec-
trum and we have the following properties

〈

0

∣
∣
∣
∣
∣
∣

(
δ̂T

T

)3
∣
∣
∣
∣
∣
∣
0

〉

= 0,

〈

0

∣
∣
∣
∣
∣
∣

(
δ̂T

T

)4
∣
∣
∣
∣
∣
∣
0

〉

− 3

〈

0

∣
∣
∣
∣
∣
∣

(
δ̂T

T

)2
∣
∣
∣
∣
∣
∣
0

〉2

= 0, etc ... .

(162)
This conclusion comes from the fact that the quantum state of the perturba-
tions is the vacuum, the “wave function” of which is a Gaussian; (v) Gravi-
tational waves are sub-dominant and there exists a consistency check relating
the importance of gravitational waves with respect to scalar density on one
hand to the tensor spectral index on the other hand. This relation reads

CT
2

CS
2

� −f2(h,Ωcdm, ΩΛ, · · · )nT , (163)

where the function f2 is f2 � 5 for the concordance model (i.e. the cold dark
matter model plus dark energy which seems to fit best the data at the time
of writing); (vi) There are oscillations in the power spectrum. Although this
conclusion is also based on the physics of the transfer function, the fact that
the perturbations are generated in a coherent manner plays a crucial role for
the survival of the acoustic peaks, see [27].

6 The Trans-Planckian Problem of Inflation

We have seen that the CMBR anisotropies are, if the inflation theory turns
out to be correct, an observable signature of quantum gravity. However, as it is
clear from the previous considerations, the CMBR anisotropies originate from
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a regime where the quantization of the gravitational field is carried out in the
standard manner. In fact, the situation is similar to the Hawking radiation. In
this last case, we have a quantum field living in a classical background. In the
present context, we also have a field ĥµν(η,x) living in the classical FLRW
Universe. Of course, the main difference is that, in the case of inflation, the
quantized test field is the perturbed metric, i.e. is the gravitational field itself
(at least the small excitations of the gravitational field around a classical back-
ground) contrary to the Hawking effect where the field is just a scalar field:
this is why, conceptually, the Hawking effect does not involve quantum grav-
ity while the theory of cosmological perturbations does. Nevertheless, from
the pure technical point of view, we have just used the techniques of ordinary
quantum field theory in curved space-time. In this section, we suggest that the
CMBR anisotropies could also carry some signatures of quantum gravity but,
this time, originating from the non perturbative regime [28]. Obviously, the
price to pay is that the following considerations are much more speculative
than the rest of this review article but the hope is to learn about quantum
gravity, maybe in the non-linear regime. Therefore, it seems that the potential
reward is worth the speculation.

The inflationary trans-Planckian issue is based on a very simple re-
mark [28]. If we assume a model, for instance a potential of the type given
by (21) (here, we choose n = 4 to be concrete), then one can calculate the
coupling constant λn. For this purpose, it is convenient to express everything
in terms of N∗, the number of e-folds before the end of inflation at which
the modes crossed out the Hubble radius, see (148). The corresponding value
of the inflaton field is given by ϕ2

∗ = m2
Pl

(N∗ + 1)/π. Therefore, the Hubble
parameter can be expressed as H2

∗ = λ4m
2
Pl

(ϕ∗/mPl)
4 = λ4m

2
Pl

(N∗ + 1)2/π2.
Finally, since the slow-roll parameter ε is given by ε = (N∗ +1)−1, one arrives
at

H2
∗

εm2
Pl

=
1
π2
λ4(N∗ + 1)3 . (164)

The scale of inflation only enters the above equation through N∗ and the
corresponding dependence is logarithmic, see (148) hence very mild. One can
thus use this formula to determine the coupling constant almost independently
of Hinf . Using (159) for � = 2 and the link between Q and C2, one finds that
λ4 � 10−13, where we have used N∗ � 60. As already mentioned, this means
that the total number of e-folds is huge, NT � 4.9 × 108. As a result, the
Hubble radius today, �H = 1061�Pl (h = 0.5), where �Pl is the Planck length,
was equal to � e−108

�Pl � 10−4.7×107
�Pl at the beginning of inflation, i.e.,

very well below the Planck length!
One can view the problem differently and ask how many e-folds before the

end of inflation a given scale was equal to the Planck length. The answer can
be easily calculated from (148) and reads
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NPl(λ) = N∗(λ) − log10

(
Hinf

mPl

)

× ln 10 (165)

� ln
(
λ

�H

)

+
[

29 − log10

(
TRH

mPl

)]

× ln 10 . (166)

If one takes the fiducial values Hinf � 1014GeV, TRH =Minf � 1016.5GeV, one
finds that the Planckian region was reached only 11 e-folds before the modes
crossed out the horizon during inflation, see Fig. 1. For instance, for the mode
λ = �H , this means 70 e-folds before the end of inflation. Of course, if the
scale of inflation is smaller, then the number of e-folds before the exit of the
Planckian region and the exit of the horizon can be bigger.

The following point should also be emphasized. At the time at which the
modes of astrophysical interest today exit the Planckian region, the value
of the Hubble parameter is generically well-below the Planckian mass. This
means that the use of a classical FLRW background is well justified. The trans-
Planckian problem concerns only the fluctuations and has to do with the fine
structure of the Universe or with the “Planckian foam” but does necessitate a
full quantum gravity description of the evolution of the underlying manifold
(for instance, one does not need quantum cosmology).

Having in mind the above considerations, the trans-Planckian problem
of inflation consists in the following [28]. It is likely that the framework of
standard quantum field theory described in the previous section and used in
order to establish what the predictions of inflation are breaks down when
the modes under consideration have a wavelength smaller than the Planck
length. Therefore, there is the danger that the so far successful predictions
of inflation are in fact based on a theory used outside its domain of validity.
In other words, there is the problem that the predictions of inflation could
in fact depend on physics on scales shorter than the Planck length, a physics
which is clearly largely unknown.

Is it really so? In trying to answer this question we immediately face the
problem that the trans-Planckian physics is presently unknown and that, as a
consequence, it is a priori impossible to study its influence on the inflationary
predictions. To circumvent this difficulty, one studies the robustness of infla-
tionary predictions to ad-hoc (“reasonable”) changes in the standard quan-
tum field theory framework supposed to mimic the modifications caused by
the actual theory of quantum gravity. If the predictions are robust to some
reasonable changes, then there is the hope that they will be robust to the
modifications induced by the true theory of quantum gravity. On the other
hand, if the predictions are not robust, the knowledge of the exact theory
seems to be required in order to predict exactly what the changes are. The
next question is of course which kind of modifications can we introduce in the
theory in order to test its robustness? Many proposals have been made and
discussed recently in the literature [28, 29, 30, 31]. Here, we concentrate on
two possibilities: the modified dispersion relation and the so-called “minimal”
approach.
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6.1 Modified Dispersion Relations

Let us start with the modified dispersion relations. The term k2 in (147)
originates from the use of the standard dispersion relation ωphys = kphys . In
condensed matter physics, it is known that the dispersion relation starts de-
parting from the linear relation ω = k on scales of the order of the atomic
separation: the mode feels the granular nature of matter. In the same way, one
can expect the dispersion relation to change when the mode starts feeling the
discreteness of space-time on scales of the order of the Planck (string) length.
Therefore, our method is to replace the linear dispersion relation ωphys = kphys

by a non standard dispersion relation ωphys = ωphys(k), this non linear relation
having of course the property that ωphys � kphys for k � kC where kC is a
new scale introduced in the theory which could be, for instance the string
scale. In the context of cosmology, this amounts to replacing the square of the
comoving wavenumber k2 with

k2 → k2
eff(k, η) ≡ a2(η)ω2

phys

[
k

a(η)

]

. (167)

Therefore, this implies that we now deal with a time-dependent dispersion
relation, a result first obtained in [28]. As a consequence, the equation of
motion (147) now takes the form

µ′′ +
[

k2
eff(k, η) − z

′′

z

]

µ = 0 . (168)

The effect of the new physics is to change the time-dependent frequency ω(k, η)
of the parametric oscillator. Let us remark that a more rigorous derivation of
this equation, based on a variational principle, has been provided in [30].

Then, the only question is whether the fact that we now have a new
time-dependent frequency can modify the spectrum k3|µ|2 or not? As we now
demonstrate, this depends on whether the evolution of the modes is adiabatic
or not in the trans-Planckian region. Indeed, if the dynamics is adiabatic
throughout (in particular if the z′′/z term is negligible), the WKB approxi-
mation holds and the solution is always given by

µ(η) � 1
√

2keff(k, η)
exp

[

−i
∫ η

ηini

keff(k, τ)dτ
]

, (169)

where ηini is some initial time. Therefore, if we start with a positive frequency
solution only and uses this solution, one finds that no negative frequency
solution appears. Deep in the region where keff � k, i.e. for k � kC , the
solution becomes

µ(η) � 1√
2k

exp
[

−ikη − i
∫ η1

ηini

keff(k, τ)dτ
]

, (170)
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where η1 is the time at which keff � k. Up to an “accumulated” phase which
will disappear when we calculate the modulus |µ|2, we recover the standard
vacuum solution e−ikη/

√
2k and hence the standard spectrum. We have thus

identified the criterion which controls whether the spectrum will be changed
or not: in order to get a modification, the dispersion relation in the trans-
Planckian region must be such that the WKB approximation is violated. This
constrains the shape of the modified dispersion relation. It is possible to give
the conditions for violation of the WKB approximation. Given an equation of
the form µ′′ +ω2µ = 0 (in the present context, one has ω2 = k2

eff − z′′/z), the
WKB approximation is valid if the following quantity is small in the trans-
Planckian region [32] ∣

∣
∣
∣
Q

ω2

∣
∣
∣
∣ � 1 , (171)

where Q is defined by the following expression Q = 3(ω′)2/(4ω2) − ω′′/(2ω).
Then, one can insert in the previous expression one’s favorite dispersion rela-
tion ans see whether this leads to a new spectrum. This has been done recently
in the literature, see [29]. For instance, one can show that the dispersion re-
lations introduced in [33, 34] do not lead to any modification. An example
where modifications are present has been studied in [30]. However, it remains
to be studied whether this can be made compatible with other studies on the
subject, in particular those using astrophysical observations to constraint the
deviations from the law ω = k [35]. Rather than studying these examples
in great details, we now turn to a new way of modeling the trans-Planckian
regime.

6.2 The Minimal Approach

Modifying the dispersion relation is equivalent to changing the form of the
equation of motion for the perturbations. The minimal approach consists in
working with the same equation of motion (with a standard dispersion relation
hence the name “minimal approach”) but with modified initial conditions.
For a given Fourier mode, the initial conditions are fixed when the mode
emerges from the trans-Planckian region, i.e. when its wavelength becomes
equal to a new fundamental characteristic scale �C = 1/kC . The time ηk of
mode “appearance” with comoving wavenumber k, can be computed from the
condition

λ(ηk) =
2π
k
a(ηk) = �C ≡ 2π

MC

, (172)

which implies that ηk is a function of k. This has to be compared with the
standard inflationary calculations where the initial time is taken to be ηk =
−∞ for any Fourier mode k and where, in a certain sense, the initial time does
not depend on k. Then, a crucial question is in which state the Fourier mode
is created at the time ηk (here, we cannot take the limit kη → −∞ anymore).
The only requirement is that, if we send the new scale MC to infinity (i.e.
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if there is no trans-Planckian region), then one must recover the standard
WKB vacuum. Therefore, the most general parametrization of these initial
conditions read

µ(ηk) = ∓ ck + dk√
2ωS,T(ηk)

4
√
π

mPl

, µ′(ηk) = ±i
√
ωS,T(ηk)

2
4
√
π(ck − dk)
mPl

. (173)

where the coefficients ck and dk are a priori two arbitrary complex numbers
satisfying the condition |ck|2 − |dk|2 = 1 and which can be expanded as

ck = 1 + yσ0 + · · · dk = xσ0 + · · · , (174)

where σ0 ≡ H/MC . When MC is sent to infinity then σ0 → 0, ck = 1, dk = 0
and, indeed, we recover the standard vacuum. Since there are two energy
scales in the problem, namely the Hubble parameter H during inflation and
the new scale MC , it is natural that the final result is expressed in terms of
their ratio H/MC , which is typically a small parameter. The parameters x and
y are considered as free parameters that are not fixed by any existing well-
established theories except, as already mentioned above, that they should be
such that the relation |ck|2 − |dk|2 = 1 is satisfied. One easily shows that this
implies y + y∗ = 0 at leading order in σ0. Expanding everything in terms of
σ0, one arrives at [31]

k3Pζ =
H2

πεm2
Pl

{

1 − 2(C + 1)ε− 2C(ε− δ) − 2(2ε− δ) ln
k

k∗
− 2|x|σ0

×
[

1 − 2(C + 1)ε− 2C(ε− δ) − 2(2ε− δ) ln
k

k∗

]

× cos
[

2
σ0

(

1 + ε+ ε ln
k

a0MC

)

+ ϕ
]

− 2|x|σ0π(2ε− δ) sin
[

2
σ0

(

1 + ε+ ε ln
k

a0MC

)

+ ϕ
]}

,

k3Ph =
16H2

πm2
Pl

{

1 − 2(C + 1)ε− 2ε ln
k

k∗
− 2|x|σ0

[

1 − 2(C + 1)ε− 2ε ln
k

k∗

]

× cos
[

2
σ0

(

1 + ε+ ε ln
k

a0MC

)

+ ϕ
]

− 2|x|σ0πε sin
[

2
σ0

(

1 + ε+ ε ln
k

a0MC

)

+ ϕ
]}

, (175)

where ϕ is the argument of the complex number x, i.e x ≡ |x|eiϕ. These
expressions should be compared with (151) and (152). The effect of the trans-
Planckian corrections is clear: superimposed oscillations in the power spectra
have appeared. The magnitude of the trans-Planckian corrections are linear
in the parameter σ0 and their amplitude is given by |x|σ0. The wavelength of
the oscillations can be expressed as ∆k/k = σ0π/ε.
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The above calculation provides us with an explicit example where the
observational predictions of inflation are modified by the trans-Planckian
physics. Let us now study this question in more details. Using (91), one can
evaluate the modifications of the multipoles moments caused by the trans-
Planckian corrections. In the limit ε/σ0 � �, one gets [36, 37]

�(�+ 1)C� � 2H2

25εm2
Pl

(1 − 2ε)
{

1 +
√
π
|x|σ0�(�+ 1)

(ε/σ0)
5/2

× cos
[

π�+
2
σ0

(

1 + ε ln
ε/σ0

a0MCrlss

)

+ ϕ− π
4

]}

. (176)

This expression should be compared with (159). The oscillations in the power
spectra are transfered to the multipole moments, at least at relatively small
scales. At large �, or for not too small values of σ0, the above equation quickly
becomes invalid and an accurate estimation can be made only with the help
of numerical calculations. The result in plotted in Fig. 3 for the temperature
fluctuations but also for the polarization, for details see [36, 37]. In those ref-
erences, a detailed comparison of the trans-Planckian signal with the recently
released high accuracy WMAP data has been performed. The main result is
that, with the oscillations taken into account, it is possible to decrease the
χ2 significantly. Instead of χ2 � 1431 for 1342 degrees of freedom for the
standard slow-roll power spectra, one now obtains χ2 � 1420 for 1340 degrees
of freedom, i.e. ∆χ2 � 10 compared to WMAP one. The reason for such an
important improvement of the χ2 is due to the presence of the oscillations
which permit a better fit of the cosmic variance outliers at small scales. The
main question is of course the statistical significance of this result. In [36, 37],
the so-called F-test has been used and indicates that the result is significant.
However, it is clear that other statistical tests, a complete exploration of the
parameter space and, of course, new data, should be used before one can re-
ally conclude that superimposed oscillations are really present in the CMBR
multipole moments. A fair description of the present situation is that there
seems to be a hint for an interesting feature in the CMBR data and that,
maybe, this feature is a signature of very high energy physics (it is clear that
the oscillations, if their presence is confirmed, could have another physical
origin).

Finally, we would like to conclude by a comment on the back-reaction
problem. This question is crucial for the consistency of the approach used
before. It is clear that the energy density of the perturbations must be smaller
or equal than that of the inflationary background. This leads to the condition
|x| ≤ √

3πmPl/MC which amounts to

|x|σ0 ≤ 104 × σ2
0√
ε
. (177)

It is important to emphasize that the above constraint is only a sufficient
condition, but by no means, unless proved otherwise, a necessary condition.
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Fig. 3. Angular TT, TE and EE power spectra for two different trans-Planckian
models, one with low frequency (LF) superimposed oscillations, the other with high
frequency (HF) oscillations, for details see [36, 37]. A zoom of the temperature
multipole moments in the first Doppler peak region is also shown (black curve) and
compared with the standard slow-roll prediction (blue curve) calculated with the
same cosmological parameters
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In general, this constraint is difficult to satisfy. Some of the best fits described
above suffer from this back-reaction problem, see [30, 36, 37]. In fact, the above
formula expresses a generic difficulty of the trans-Planckian question, this
difficulty being present regardless of the approach used in order to model the
new physics. The presence of trans-Planckian corrections means the presence
of particles (with respect to the standard vacuum) the energy density of which
is very easily of the order of the background energy density. On the other
hand, if we try to satisfy the back-reaction constraint then the signal very
easily becomes tiny and, hence, non observable. A major advance, which would
allow us to escape the previous vicious circle, would be to calculate explicitly
the effect of the back-reaction. Unfortunately, for the moment, this is still an
open question and more work is required to tackle this very important task.
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In these lectures I review, in as much pedagogical way as possible, various the-
oretical ideas and motivation for violation of CPT invariance in some models of
Quantum Gravity, and discuss the relevant phenomenology. Since the subject
is vast, I pay particular emphasis on the CPT Violating decoherence scenario
for quantum gravity, due to space-time foam. In my opinion this seems to
be the most likely scenario to be realised in Nature, should quantum gravity
be responsible for the violation of this symmetry. In this context, I also dis-
cuss how the CPT Violating decoherence scenario can explain experimental
“anomalies” in neutrino data, such as LSND results, in agreement with the
rest of the presently available data, without enlarging the neutrino sector.

1 Introduction and Summary

Next year, Special Relativity celebrates a century of enormous success, having
passed many stringent experimental tests, in both its classical and quantum
versions (relativistic quantum field theories in flat space times). Unfortunately,
the same is not true for its curved-space counterpart, General Relativity. A
consistently quantized theory of gravity, that is a dynamical theory of curved
geometries themselves, still remains a mystery. Despite the enormous effort
invested for this purpose on behalf of the scientic community over the past
ninety years, Quantum Gravity is still far from being understood as a physical
theory.

Of course, elegant and mathematically consistent models, such as string
or, better, brane theory [1], have been developed to a great detail from a
mathematical viewpoint. Nevertheless there are still many fundamental issues
and questions which remain unresolved. For instance, the complete process of
evaporation of a black hole, or the inverse process of collapsing matter to form
a Black Hole, are not completely understood in string theory. The counting
of microstates and verification of the Hawking-Bekenstein entropy/area law
have been understood mathematically only in specific cases of extremal black
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holes, and probably this is the only case that can be studied rigorously in such
a framework. Other issues, like the possible existence of space-time foam, that
is microscopic singular fluctuations of the (quantum) geometry, which give the
space time a “foamy”, topologically non trivial and possibly non-continuous
structure at Planck scales (10−35 m), still remain far from being resolved in
the context of string theory.

In [2] it was suggested that a consistent mathematical framework for deal-
ing with such issues in the context of string theory was the Liouville non-
critical srting theory approach, involving strings propagating in non-conformal
space-time backgrounds. This violation of conformal symmetry, which lies at
the cornerstone of critical string theory, is remedied by the non-decoupling of
the Liouville mode, which enters as a whole new target space dimension. In
certain models of stringy foam, this extra dimension has time-like signature,
and hence it can be identified with a target time, thereby giving the time co-
ordinate a fundamentally irreversible nature, as a result of specific properties
of the Liouville dynamics. Indeed, the latter acts as a local renormalization-
group scale on the world-sheet of the string, and as such is irreversible. This
fundamental irreversibility of non-critical string theory makes it analogous to
non-equilibrium systems in field theory. From this point of view, then, critical
strings are viewed as asymptotic “equilibrium points” in string theory space.

Alternative approaches to Quantum Gravity, on the other hand, such as
the loop gravity approach [3], which has the ambition of formulating a space-
time background independent quantum theory of Gravity, have only relatively
recently began to deal with non-flat space times (such as those with cosmo-
logical constant) or highly curved ones (black holes etc.), and hence their full
potential in dealing with the above issues is still not explored [4]. These are
very elegant theories from a geometrical viewpoint, which are based on the
analogy of gravity to non Abelian gauge theories. Understanding the rôle of
matter in such gravity theories is a pressing task, in order to give such mdoels
phenomenological relevance. In addition to loop gravity, non commutative
geometry [5] is another mathematically elegant route that would certainly
prove to be relevant for a dynamical quantum theory of space time at Planck
scales, where space time may be discrete. This approach, although existing
for some time, has only recently started to be paid attention by the bulk of
the theoretical physicists, with a plethora of applications, ranging from field
theoretic models to string and brane theories.

A theoretical model, however, no matter how detailed and elegant it might
be, does not become a physical theory unless it makes some form of contact
with experiment. Thus, to understand and be guided in our quest for quan-
tum gravity we need experimentally testable or falsifiable predictions. Critical
strings, or other approaches to quantum gravity, which respect all local sym-
metries of classical General Relativity, did not make any predictions for low-
energy theories which could be testable in the foreseeable future. The reason is
simple: the coupling constant of gravity, the Newton constant GN ∝ 1/M2

P (in
four dimensions) is very small, and, on account of local Lorentz symmetry and
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general covariance, quantities of possible experimental interest, such as cross
sections and probabilities, would be characterised by quantum gravitational
loop corrections which would be proportional to some power of curvature
tensors. The latter having dimensions of momentum squared, would imply
that such quantities would be suppressed at least by the inverse square (and
most likely by higher powers) of the Planck Mass scale. This would make the
prospects for detection of such quantum gravity effects difficult, if not im-
possible, for the foreseeable future. Of course this does not necessarily mean
that such approaches are physically incorrect, what it means is that, even if
they represent reality, we would have no way of testing them in the foresee-
able future, and as such they would remain solely mathematically consistent
models.

On the other hand, recently, more and more physicists contemplate the
idea that some of the fundamental symmetries or laws that govern classical
General and Special Relativity, such as linear Lorentz symmetry, or princi-
ples such as the equivalence principle, may not be valid in a full quantum
theory of gravity. If true, then, this would probably imply that the above-
mentioned Planck-mass strong suppression factors could be modified in such
a way that quantum gravity effects are enhanced, thereby leading to some
testable/falsifiable predictions in the near future. For instance, in the non-
critical string approach to quantum gravity advocated in [2], deviation from
conformal invariance due to peculiar backgrounds in string theory, including
foamy ones, imply in some models at an effective low-energy field theory level,
modified dispersion relations for photons or at most for some electrically neu-
tral gauge bosons. Such modifications dot not occur not for charged probes
or in general chiral matter [7], thereby violating a form of the equivalence
principle, in the sense of the non-universality of gravity effects. In such mod-
els it is a gauge symmetry that protects the dispersion relation of charged or
chiral matter probes, which, unlike photons, do not interact with space time
defects in the foam, the latter consisting of point-like branes in string theory
[8]. The modification to the dispersion relations due to such quantum gravity
effects are suppressed only by a single power of Planck Mass [6]. Such minimal
suppression models for photons are not far from being tested, for instance by
future Gamma Ray Burst astronomy [9, 10]. On the other hand, models of
quantum gravity foam with universal modified dispersions linearly suppressed
by the Planck Mass scale are already excluded by means of astrophysical ob-
servations of Synchrotron radiation from Crab Nebula [11, 12], and one is not
far from reaching sensitivities quadratic to inverse Planck mass [7].

In this context, interesting “bottom-up” approaches to quantum gravity
have been proposed and developed rigorously, such as the Doubly-Special Rel-
ativity (DSR) theories [13], which are at the focus of this meeting. According
to such approaches, the conventional Lorentz symmetry of flat Minkowski
space time is not valid, but instead one has a symmetry under non-linear ex-
tensions of the Lorentz transformations. Such non-linear extensions are not
unique, and this poses an interesting theoretical challenge for these models.
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The basic idea behind such theories is that the Planck scale should be ob-
server independent, and hence such non-linear models are characterised not
only by the invariance under frame changes of the dimensionless speed of light
in vacuo, but also by the frame-invariance of a dimensionful length scale, the
Planck length. For this reason, although at present formulated in flat space
times, such non-linear extensions of Lorentz symmetry are viewed as a pre-
lude to more complete models of quantum gravity, where the local group
is not the conventional (linear) Lorentz, thereby violating the strong form
of the equivalence principle. However it remains to be proven whether such
models are viable as candidates for a complete and realistic theory of quan-
tum gravity. In other lectures in this meeting we shall hear more about the
mathematical foundations and properties of such theories [14], and their phe-
nomenology [12, 15, 16], where we refer the reader for details.

In all approaches mentioned so far as candidate theories for quantum grav-
ity there is a common feature, associated with the violation of a theorem whose
validity characterises all consistent flat-space time relativistic quantum field
theories known to date. This is the CPT theorem [17, 18, 19, 20]. The violation
of this (discrete) space-time symmetry may have important phenomenological
implications for low energy physics, and indeed one is prompted immediately
to think that this may be a way of testing or falsifying experimentally various
theoretical models of quantum gravity entailing such a violation.

There is a number of fundamental questions, however, that one has to
ask before embarking on a study of the phenomenology of CPT Violation:
(i) What are the theories which allow for CPT breaking?, (ii) How (un)likely
is it that somebody, someday finds CPT Violation in the Laboratory, and
why?, (iii) What formalism does one has to adopt? Indeed, since our current
phenomenology of particle physics is based on CPT invariance, how can we
be sure of observing CPT Violation and not something else? And finally,
(iv) there does not seem to be a single “figure of merit” for CPT viola-
tion. Then how should we compare various “figures of merit” of CPT tests
(e.g. direct mass measurement between matter and antimatter (e.g. K0 −K0

mass difference a la CPLEAR), quantum decoherence effects, modifications
to Einstein-Podolsky-Rosen (EPR) states in meson factories, neutrino mix-
ing, electron g-2 and cyclotron frequency comparison, neutrino spin-flavour
conversion etc.)

In some of these questions I shall try to give answers in the context of
the present set of Lectures. I shall not try to present a complete overview of
phenomenological tests of CPT Invariance, however, because the subject is
vast, and already occupies a considerable part of the published literature. In
these lectures I will place the emphasis on neutrino tests of CPT invariance,
because as I will argue below, in many instances neutrinos seem to provide
at present the best bounds on possible CPT violation. However, I must stress
that, precisely because CPT violation is a highly model dependent feature of
some approaches to quantum gravity (QG), there may be models in which
the sensitivity of other experiments on CPT violation, such as astrophysical
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experiments, is superior to that of current neutrino experiments. For this
reason I will also give a brief outline of alternative tests of CPT violation.

My lectures will focus on the following three major issues:

(a) What is CPT Symmetry : I will give a definition of what we mean by CPT
invariance, and under what conditions this invariance holds.

(b) Wny CPT Violation? : Currently there are various Quantum Gravity
Models which may violate Lorentz symmetry and/or quantum coherence
(unitarity etc.), and through this CPT symmetry:
(i) space-time foam [21] (local field theories [22], non-critical strings [2]

etc.),
(ii) (non supersymmetric) string-inspired standard model extension with

Lorentz Violation [23],
(iii) Loop Quantum Gravity [3].
(iv) CPT violation may also occur at a global scale, cosmologically [35], as

a result of a cosmological constant in the Universe, whose presence
may jeopardize the definition of a standard scattering matrix.

(c) How can we detect CPT Violation? : Here is a current list of most sensi-
tive particle physics probes for CPT tests:
(i) Neutral Mesons: Kaons [24, 25], B-mesons, and their entangled states

in φ and B factories [26, 27, 28].
(ii) anti-matter factories: antihydrogen [29] (precision spectroscopic tests

on free and trapped molecules [23, 30, 31]),
(iii) Low energy atomic physics experiments [30], including ultra cold

neutron experiments in the gravitational field of the Earth.
(iv) Astrophysical Tests (especially Lorentz-Invariance violation tests,

via modified dispersion relations of matter probes etc.) [9, 10]
(v) Neutrino Physics, on which we shall mainly concentrate in these

lectures [32].

I shall be brief in my description due to space restrictions. For more de-
tails I refer the interested reader to the relevant literature. I will present some
elementary proofs of theorems that will be essential for the formalism of CPT
Violation and its phenomenology. I will not be complete in reviewing the phe-
nomenology of CPT violation; in my lectures I will place emphasis on a specific
type of violation, that through quantum decoherence, which I believe to be the
most likely one to charactrise space-time foam theories of quantum gravity;
this belief is based on the fact that decoherence may be compatible with fun-
damental local symmetries of space time, such as Lorentz invariance [33, 34].
For completeness, however, I will also give a brief exposition of alternative
ways of CPT violation, and refer the reader to some key references, where
more detailed information is provided on those topics. Needless to say that
I am fully aware of the vastness of the topic of CPT Violation, which grew
enormously in recent years, and I realize that I might not have done a per-
fect job here; I should therefore apologize beforehand for possible omissions
in references, and topics, but this was not intentional. I do hope, however,
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that I give here a rather satisfactory representation of the current situation
regarding this important research topic.

2 Theoretical Motivation for CPT Violation
and Formalism

2.1 The CPT Theorem and How It May Be Evaded

The CPT theorem refers to quantum field theoretic models of particle physics,
and ensures their invariance under the successive operation (in any order)
of the following discrete transformations: C(harge), P(arity=reflection), and
T(ime reversal). The invariance of the Lagrangian density L(x) of the field
theory under the combined action of CPT is a property of any quantum
field theory in a Flat space time which respects: (i) Locality, (ii) Unitarity
and (iii) Lorentz Symmetry.

ΘL(x)Θ† = L(−x) , Θ = CPT , L = L† (1)

The theorem has been suggested first by Lüders and Pauli [17], and also
by John Bell [18], and has been put on an axiomatic form, using Wightman
axiomatic approach to relativistic (Lorentz invariant) field theory, by Jost [19].
Recently the Lorentz covariance of the Wightmann (correlation) functions of
field theories [20] as an essential requirement for a proof of CPT has been
re-emphasized in [36], in a concise simplified exposition of the work of Jost.
The important point to notice in that proof is the use of flat-space Lorentz
covariance, which allows the passage onto a momentum (Fourier) formalism.
Basically, the Fourier formalism employs appropriately superimposed plane
wave solutions for fields, with four-momentum pµ. The proof of CPT, then,
follows by the Lorentz covariance transformation properties of the Wightman
functions, and the unitarity of the Lorentz transformations of the various
fields.

In curved space times, especially highly curved ones with space-time
boundaries, such as space-times in the (exterior) vicinity of black holes, where
the boundary is provided by the black hole horizons, or space-time foamy
situations, in which one has vacuum creation of microscopic (of Planckian
size �P = 10−35 m) black-hole horizons [21], such an approach is invalid, and
Lorentz invariance, and possibly unitarity, are lost. Hence, such models of
quantum gravity violate requirements (ii) & (iii) of the CPT theorem, and
hence one should expect its violation.

It is worthy of discussing briefly the basic mechanism by which unitarity
may be lost in space-time foamy situations in quantum gravity. This is the
lecturer’s favorite route for possible quantum-gravity induced CPT Violation,
which may hold independently of possible Lorentz invariance violations. It is
at the core of the induced decoherence by quantum gravity [24, 25].
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The important point to notice is that, in general, space-time may be dis-
crete and topologically non-trivial at Planck scales 10−35 m, which might (but
this is not necessary [33, 34]), imply Lorentz symmetry Violation (LV), and
hence CPT Violation (CPTV). Phenomenologically, at a macroscopic level,
such LV may lead to extensions of the standard model which violate both
Lorentz and CPT invariance [23].

In addition, there may be an environment of gravitational degrees of
freedom (d.o.f.) inaccessible to low-energy experiments (for example non-
propagating d.o.f., for which ordinary scattering is not well defined [25]). This
will lead in general to an apparent information loss for low-energy observers,
who by definition can measure only propagating low-energy d.o.f. by means
of scattering experiments. As a consequence, an apparent lack of unitarity
and hence CPTV may arise, which is in principle independent of any LV ef-
fects. The loss of information may be understood simply by the mechanism
illustrated in Fig. 1. In a foamy space time there is an ongoing creation and an-
nihilation of Quantum Gravity singular fluctuations (e.g. microscopic (Planck
size) black holes etc), which indeed implies that the observable space time is an
open system. When matter particles pass by such fluctuations (whose life time
is Planckian, of order 10−43 s), part of the particle’s quantum numbers “fall
into” the horizons, and are captured by them as the microscopic horizon dis-
appears into the foamy vacuum. This may imply the exchange of information
between the observable world and the gravitational “environment” consist-
ing of degrees of freedom inaccessible to low energy scattering experiments,
such as back reaction of the absorbed matter onto the space time, recoil of
the microscopic black hole etc. In turn, such a loss of information will imply
evolution of initially pure quantum-mechanical states to mixed ones for an
asymptotic observer.

Horizon 
of Black Hole ‘‘out’’ 

MIXED STATES
‘‘in’’
PURE STATES

= density matrix

= Tr ψ >< ψ||
unobs

| ... >

modified temporal evolution of ρ: 
d
dt

ρ = i [ ρ , H ] + ∆Η(ρ) ρ

quantum mechanics 
violating term

quantum mecha−
nical terms

SPACE−TIME FOAMY SITUATIONS 
NON UNITARY (CPT VIOLATING) EVOLUTION 

OF PURE STATES TO MIXED ONES 

ρ
out

Fig. 1. A basic mechanism for loss of information in a space time foamy situation
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As a result, the asymptotic observer will have to use density matrices
instead of pure states: ρout = Trunobs|out〉〈out| = $ ρin$ �= SS†, with S = eiHt

the ordinary scattering materix. Hence, in a foamy situation the concept of
the scattering matrix is replaced by that of the superscattering matrix, $,
introduced by Hawking [21], which is a linear, but non-invertible map between
“in” and “out” density matrices; in this way, it quantifies the unitarity loss in
the effective low-energy theory. The latter violates CPT due to a mathematical
theorem by R. Wald, which we describe in the next Subsect. [37].

Notice that this is an effective violation, and indeed the complete theory
of quantum gravity (which though is still unknown) may respect some form
of CPT invariance. However, from a phenomenological point of view, this
effective low-energy violation of CPT is the kind of violation we are interested
in here. A word of caution is necessary at this point. Some theorists believe
that quantum gravity does not entail an evolution of a pure quantum state to a
mixed one, but, as is the case in some quantum mechanical decoherence models
of open systems, to be discussed below, the purity of states is maintained
during the quantum-gravity induced decoherent evolution. If this is the case,
then CPT may be conserved in such models, provided, of course, Lorentz
invariance and locality of interactions are respected.

2.2 $ Matrix and Strong CPT Violation (CPTV)

The theorem of R. Wald states the following [37]: if $ �= S S†, then CPT is
violated, at least in its strong form, in the sense that the CPT operator is not
well defined.

For instructive purposes we shall give here an elementary proof. Suppose
that CPT is conserved, then there exists a unitary, invertible CPT operator
Θ: Θρin = ρout. Since the density matrix acts on a tensor product space
between ket and bra vectors by definition, ρ = ψ ⊗ ψ, the action of Θ is
defined schematically as: Θ = θθ†, with θ acting on state vectors ψ, and being
anti-unitary, i.e. θ† = −θ−1.

Asuming that such a Θ exists, we have: ρout = $ ρin → Θρin = $
Θ−1ρout → ρin = Θ−1$ Θ−1ρout.

But ρout = $ρin, hence:

ρin = Θ−1$Θ−1$ρin . (2)

The last relation implies that $ has an inverse

$−1 = Θ−1$Θ−1 , (3)

which, however, as we explain now is impossible, due to the information loss
in case a pure state evolves into a mixed one.

To prove [37] this last statement formally we first notice that from (3) one
also obtains the relation:

Θ = $Θ−1$ . (4)
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Consider now a pure state density matrix ρin = |IN〉〈IN |, which evolves to
the density matrix (mixed state) $ρin. As a result of (4), the mixed state
Θ−1$ρin must evolve to the pure state Θρin. However, suppose we have an
out state ψ, which we obtain by the action of $ on an IN density matrix σ,
that is:

$σ = ψ ⊗ ψ (5)

where, as mentioned above, ⊗ denotes the appropriate tensor product of
Hilbert spaces spanned by ket and bra vectors. One may expand σ in terms
of its eigenvectors φi, corresponding physically to a weighted superposition of
states that comprise the mixed state σ:

σ =
∑

i

piφi ⊗ φi , (6)

with pi positive, and
∑

i pi = 1. Since by definition $ is a linear map, we have:
∑

i

pi$(φi ⊗ φi) = ψ ⊗ ψ (7)

Consider now an OUT state vector χ orthogonal to ψ. Taking the expectation
value of (7) in the state χ we obtain:

∑

i

pi〈χ|$(φi ⊗ φi)|χ〉 = 0 (8)

Each term in (8) is non negative, due to the positive-definiteness of pi and
the positivity of the density matrix (by definition) $(φi ⊗ φi). Therefore, (8)
implies

〈χ|$(φi ⊗ φi)|χ〉 = 0 (9)

for all i and all χ orthogonal to ψ. This implies

$(φi ⊗ φi) = ψ ⊗ ψ (10)

for all i, i.e. each initial pure state φi must evolve to the same final pure
state ψ. In that case, θ−1ψ must evolve to the final state θφi for all i. This is
impossible if there is more than one φi, i.e. if the density matrix σ represents
a mixed state.

Hence, in case where decoherence implies the evolution of a pure state to
a mixed one, CPT must be violated, at least in its strong form, in the sense of
Θ not being a well-defined operator, and the non existence of the inverse of
$, as discussed previoulsy. The non invertibility of $ should not be considered
as a surprise in that case, as a result of the involved loss of information in the
problem. CPT symmetry, and also by the same arguments microscopic time
reversal [37], fail in a dramatic way in such a case: microscopic time-reversed
dynamics does not merely fail to be the same as time evolution forward in
time, which would simply mean the non commutativity of the corresponding
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operators/generators of the symmetry with the hamiltonian of the system
under consideration, but does not exist at all.

As I remarked before, this is my preferred way of CPTV by Quantum
Gravity, given that it may occur in general independently of LV and thus pre-
ferred frame approaches to quantum gravity. Indeed, I should stress at this
point that the above-mentioned gravitational-environment induced decoher-
ence may be Lorentz invariant [33], the appropriate Lorentz transformations
being slightly modified to account, for instance, for the discreteness of space
time at Planck length [34]. This is an interesting topic for research, and it is
by no means complete. Although the lack of an invertible scattering matrix
in most of these cases implies a strong violation of CPT, nevertheless, it is
interesting to demonstrate explicitly whether some form of CPT invariance
holds in such cases [38]. This also includes cases with non-linear modifications
of Lorentz symmetry [13], discussed in this School, which arise from the re-
quirement of viewing the Planck length as an invariant (observer-independent)
proper length in space time.

It should be stressed at this stage that, if the CPT operator is not well
defined, then this may lead to a whole new perspective of dealing with pre-
cision tests in meson factories. In the usual LV case of CPTV [23], the CPT
breaking is due to the fact that the CPT operator, which is well-defined as a
quantum mechanical operator in this case, does not commute with the effective
low-energy Hamiltonian of the matter system. This leads to mass differences
between particles and antiparticles. If, however, the CPT operator is not well
defined, as is the case of the quantum-gravity induced decoherence [24, 25],
then, the concept of the “antiparticle” gets modified [28]. In particular, the
antiparticle space is viewed as an independent subspace of the state space of
the system, implying that, in the case of neutral mesons, for instance, the
anti-neutral meson should not be treated as an identical particle with the
corresponding meson. This leads to the possibility of novel effects associated
with CPTV as regards entangled states of Einstein-Podolsky-Rosen (EPR)
type, which may be testable at meson factories [28]. We shall discuss this in
some detail later on.

2.3 CPT Symmetry without CPT Symmetry?

An important issue which arises at this point is whether the above violation
of CPT symmetry is actually detectable experimentally. This issue has been
examined in [37], where it was proposed that despite the strong CPT violation
in cases where decoherence leads to an evolution of a pure state to a mixed
one, there is the possibility for a softer (weaker) form of CPT invariance in
such cases, compatible with the non-invertibility of $.

The main idea behind such a weak form of CPT invariance is that, although
in the full theory CPT is violated in the above sense, nevertheless one can still
define asymptotic pure scattering IN and OUT states as the CPT inverse of
each other. In formal terms, although in the full theory Θ is not well defined,
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however one can define pure states ψ ∈ HIN , and φ ∈ HOUT in the respective
Hilbert spaces H of IN and OUT states, such that the following equality
between probabilities P holds:

P(ψ → φ) = P(θ−1φ→ θψ) (11)

If only pobabilities are measured experimentally, which is certainly our expe-
rience so far, then the equality (11) would imply that the strong form of CPT
invariance would be undetectable experimentally.

From the point of view of the superscattering matrix $, the equality (11)
implies the following relation [37]:

〈φ|$(ψ ⊗ ψ)|φ〉 = 〈θψ|$(θ−1φ⊗ θ−1
φ)|θψ〉 (12)

or, equivalently :
$† = Θ−1$Θ−1 (13)

when the action is considered on pure asymptotic states. Relation (13) is
compatible with the non-existence of an inverse of $, unless the full CPT
invariance holds, which would imply unitarity of $, i.e. $† = $−1. Wald has
argued in favour of this conclusion by considering a simple case of finite-
dimension (n) Hilbert spaces of IN and OUT states, and assuming that every
pure IN state evolves to the density matrix 1/nδab in the OUT Hilbert space.
It is clear that in this example $−1 does not exist, but for all ψ and φ the
relation (11) holds, since both sides equal 1/n.

2.4 Decoherence and Purity of States under Evolution

Since the above result of weak CPT invariance requires the purity of asymp-
totic scattering states, a natural question to ask is whether there exist concrete
models of decoherence where the purity of an initial state vector remains, while
time irreversibility holds.

A physically acceptable framework for discussing decohering evolution of
an open quantum mechanical system is that of Lindblad or the so-called dy-
namical semigroup approach [39], which ensures the complete positivity of
the density matrix ρ(t) at any time moment t during the evolution, and the
conservation of probability Trρ = 1. The Lindblad evolution of open sys-
tems [39], with Hamiltonian H, interacting with an environment through op-
erators Dj ,D

†
j , is described as a linear evolution in the density matrix ρ:

ρ̇ = i[ρ,H] + D[ρ]; D[ρ] =
∑

j

(
{ρ,D†

jDj} − 2DjρD
†
j

)
(14)

where {., .} denotes an anticommutator. The Hamiltonian H in (14) may
contain terms from the environmental entanglement which can be expressed
as commutators with ρ, and hence it should be understood as an effective
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Hamiltonian of the system. The decoherence term D[ρ], on the other hand,
cannot be expressed as such a commutator.

To ensure energy conservation on the average, and monotonic increase of
the von-Neumann entropy S = −Tr (ρlnρ), one has to impose self-adjointness
of the Lindblad environmental operators

D†
j = Dj (15)

and also require that these operators commute with the Hamiltonian

[Dj ,H] for all j (16)

This leads to a double commutator structure of the decoherence terms in (14):

D[ρ] =
∑

j

[Dj , [Dj , ρ]] (17)

In general, in this type of decoherence one has the evolution of a pure state
into a mixed one. However, there exist subclasses of Lindblad evolution, in
particular energy-driven simple decoherence models [40, 41], where the purity
of state vectors is preserved. A mathematical criterion for this feature is that

ρ2 = ρ, Trρ = 1 , (18)

during the evolution.
In such models, Dj = λjH, with λj c-number constants. Without loss

of generality, we can substitute in such a case the sums in (17) by a single
environmental operator

D = λH, λ2 =
∑

j

λ2
j (19)

This simplifies the situation and will suffice for our purposes in this work.
In this type of decoherence, the density matrix evolution preserves the

purity of states, and can be written in terms of stochastic Ito differential
equations for the state vectors |ψ〉 (or equivalently the pure state density
matrix ρ = |ψ〉〈ψ|):

dρ = −i[H, ρ]dt− 1
8
[D, [D, ρ]]dt+

1
2
[ρ, [ρ,D]]dWt (20)

where t is the time, and dWt is an Ito stochastic differential obeying

dW 2
t = dt, dtdWt = 0 (21)

which are the equivalent of white noise conditions. Needelss to say that one
can generalise the above equation to the case where sums of Dj operators
are involved, but as we mentioned above this will not be necessary for our
purposes here.
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We remark that, in terms of state vectors |ψ〉, the first term in (20) is
nothing but the Schrödinger Hamiltonian term −iH|ψ〉, while the second term
resembles Fokker-Planck stochastic diffusion terms. Unlike the Schrödinger
term, the diffusion term is not invariant under the time reversal operation
t → −t and i → −i, and hence time irreversibility occurs in the problem,
despite the purity of states.

Upon using (19) in (20), one obtains a stochastic equation for this energy-
driven decoherence:

dρ = −i[H, ρ] − λ
2

8
[H, [H, ρ]]dt+

λ

2
[ρ, [ρ,H]]dWt (22)

The double commutator of the Hamiltonian, together with the purity-of-states
condition (18), leads to the following order of the decoherence term in such
models, obtained by considering the vacuum expectation value of the dou-
ble commutator term in (22): γ ≡ 〈〈D[ρ]〉〉 = Tr

(
ρλ2

8 [H, [H, ρ]
)
. Using as

a complete orthonormal basis of states energy eigenstates |m〉, then, it is
straightforward to see that the above estimate leads to the square of the en-
ergy variance

γ =
λ2

8
(∆H)2 = 〈〈H2〉〉 − (〈〈H〉〉)2 (23)

for this model of decoherence.
In quantum-gravity driven models of decoherence it is natural to assume

that λ2 ∝ 1/MP , whereMP ∼ 1019 GeV is the Planck scale, which is expected
to be the characteristic scale of quantum gravity. In such models then one
obtains the following estimate for the decoherence coefficient γ [41]

γ ∼ (∆H)2 /MP (24)

We shall come back to physical applications of this case later on, when we
discuss sensitive probes of quantum mechanics, such as neutral mesons and
neutrinos.

Before closing this subsection we should remark that other types of deco-
herence models, which are not energy driven, but correspond to spontaneous
localisation in space, also exist. One such model is the one presented in [42],
in which the operator D is taken to be proportional to the spatial coordinate
operator q, thereby leading to spatial localisation. In such a case again the
decoherence coefficient γ (24) is found to be proportional to the square of the
position operator variance γ ∝ (∆q)2, expressing, e.g. spatial separation be-
tween centres of wavepackets, resulting for instance from the mass difference.

2.5 More General Case: Dynamical Semi-Group Approach
to Decoherence, and Evolution of Pure States to Mixed

In the previous subsection we examined special cases of Lindblad decoher-
ing evolution, which preserved the purity of quantum states. The Lindblad
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approach to decoherence, however, in general has the feature of implying an
evolution of a pure state to a mixed one, in the sense of Trρ(t)2 �= Trρ(t),
thereby leading to a violation of the strong form of CPT, according to the
theorem of [37]. The general Lindblad evolution can be formulated in such a
way that no detailed knowledge of the underlying microscopic dynamics of the
decohering environment is necessary in order to arrive at certain conclusions
of phenomenological interest. This is achieved by means of the so-called dy-
namical semigroups approach to decoherence [39], which is a generic formalism
to describe a decohering evolution obeying some basic properties. The time
irreversibility in this approach is linked to the lack of an inverse of an element
in an appropriate semigroup.

Consider the generic case of a decohering (of Lindblad, or even more gen-
eral, type) evolution for anN -level system, that is a system whose Hamiltonian
(energy) eigenstates span an N -dimensional state vector space. The decoher-
ing operators, assumed bounded for our purposes here, can be represented by
N × N matrices generated by a basis Fµ, µ = 0, 1, . . . N2 − 1, endowed by
the scalar product (Fµ, Fν) = 1

2δµν . For the purposes in this work we shall be
dealing explicitly with N = 2, 3 level systems, in which cases the basis {Fµ}
consists of: (i) the three 2× 2 Pauli matrices plus the 2× 2 identity matrix I2
for the N = 2 case, and (ii) the 3 × 3 Gell-Mann matrices Λi,i = 1, . . . 8 plus
the 3 × 3 identity matrix I3 for the N = 3 case.

Generically the matrices Fµ satisfy the following commutation relations:

[Fi, Fj ] = i
∑

k

fijkFk, 1 ≤ i, j, k ≤ 8 (25)

where fijk are the structure constants of the SU(N) group, and we follow the
notation that Latin indices run from 1, to N2 − 1, while Greek indices run
from 0, 1, . . . N2 − 1.

Expanding the environmental operators, as well as the (effective) Hamil-
tonian and the density matrix in (14) in terms of the basis {Fµ}:

H =
∑

µ

hµFµ, ρ =
∑

µ

ρµFµ, Dj =
∑

mu

d(j)µ Fµ (26)

and imposing the hermiticity of D, which ensures the monotonic increase of
the von Neumann entropy S = −Trρlnρ, we can write the decoherence term
D[ρ] in (14) as:

D[ρ]Lindblad =
∑

µ,ν

LµνρµFν , (27)

where the matrix Lµν is real and symmetric, with the properties:

Lµ0 = L0µ = 0, Lij =
1
2

∑

k,l,m

(dm · dk)fimlfikj , (28)

whereby dµ = (d(1)µ , . . . d
(N2−1)
µ ).
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The vanishing of the first row and column is due to entropy increase.
Notice that if we do not impose the requirement of energy conservation on
the average, then it is not necessary to assume the commutativity of the
operators with the Hamiltonian, so in general [Dj ,H] �= 0. In fact below
we shall examine some examples where energy may be violated due to foam
interactions.

The evolution equation (14), then, reads:

ρ̇ =
∑

i,j

hiρjfijµ +
∑

ν

Lµνρν , µ, ν = 0, . . . N2 − 1 . (29)

where the overdot denotes derivative with respect to time t.
Probability conservation Trρ(t) = 1 at any time moment t implies that

the differential equation for the ρ0 component decouples, yielding

ρ0(t) = const (30)

The remaining differential equations (29) then can be written in the form:

ρ̇k =
∑

j

(
∑

i

hifijk + Lkj

)

ρj =
∑

k

Mkjρj (31)

Representing by A the matrix that diagonalises the matrix M, and letting
{λ1, . . . λN2−1} be the set of eigenavalues of M, and {v1, . . . vN2−1} be the
corresponding set of its eigenvectors, we have for the ij elements of A: Aij =
(vi)j . The solution of (31), then, can be written as:

ρi(t) =
∑

k,j

eλktAikA−1
kj ρ(0)j (32)

Thus, in the dynamical semigroup approach, we have seen that the imposition
of generic properties, such as monotonic entropy increase, probability conser-
vation etc., allows for an apparently complicated decoherence/entanglement
problem to be transformed into an algebraic problem of determining the eigen-
values and eigenvectors of finite-dimensional matrices. In general, for N -level
systems, withN ≥ 3, the general form of the decoherence matrix is too compli-
cated to allow for clear physical meaning of all its entries. As we shall discuss
below, however, in the context of specific examples, one can make physically
meaningful simplicifcations, which allow for physical predictions to be made
from such a formalism.

2.6 State Vector Reduction (“Wavefunction Collapse”)
in Lindblad Decoherence

Decoherence in general is expected to lead to a decay with time t of the off-
diagonal elements of the reduced density matrix of an open system, which are
in general of the form [44, 45].
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ρ(x, x′, t) ∼ exp
(−ND(x− x′)2t) , (33)

where x, x′ denote the spatial locations of the centre of mass of a system of N
particles, and D is a generic decoherence parameter. Notice the dependence
of the exponent on the square of the distance |x − x′|2, and on the number
of particles N , which implies that the larger the N |x − x′|2 the faster the
decoherence. Hence, macroscopic bodies (containing, say, at least an Avogadro
number of particles) will in general decohere very fast. Such considerations
are general, and can also be extended to decoherence models that may have
relevance to quantum gravity, such as the wormhole-induced decoherence [44].

I should stress at this point that in general, decoherence does not neces-
sarily solves the problem of measurement, because it cannot explain which
one of the diagonal entries of the density matrix is picked up during a “mea-
surement”, that is an interaction of the subsystem with a macroscopic envi-
ronment.

In some models of decoherence, though, especially the ones where the
purity of states is preserved during the evolution, like the ones examined
above, it is possible to establish a mathematical criterion for the state vector
reduction, that is the localisation of the state vector in a given “measurement”
channel in state space. It is the point of this subsection to discuss briefly this
issue.

First of all we note that the temporal evolution (14) for these specific
Lindblad systems can be written in terms of the corresponding state vectors
|ψ〉 via the Ito form [43]:

|dψ〉 = −iH|dψ〉dt+
∑

j

(

〈D†
j〉ψDj − 1

2
D†

jDj − 1
2
〈D†

j〉ψ〈Dj〉ψ
)

|ψ〉dt

+
∑

j

(Dj − 〈Dj〉ψ) |ψ〉dWj,t (34)

where dWj,t are the stochastic differential random variables satisfying (21).
The state vector reduction, or equivalently “collapse” of the wavefunction

that characterises this formalism can be proven as follows [43]: one makes the
assumption that the Hamiltonian of the system H can be cast in a block-
diagonal form in terms of state-space “channels” {k}, which exist indepen-
dently of any “measurement” (i.e. interaction with a macroscopic measure-
ment apparatus). This means that, if Pk denotes the projection operator on
channel k, then

[H,Pk] = 0 (35)

The state vector reduction is then proven by demonstrating the localisation
of |ψ〉 on a state-space channel k due to the environmental entanglement in
(34). A mathematical measure of this localisation is the so-called Quantum
Dispersion Entropy K defined as [43]:

K = −
∑

k

〈Pk〉ψln〈Pk〉ψ (36)
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which, if one uses (34), and the above assumptions, can be shown to have the
following monotonic decrease properties:

d

dt
(MK) = −

∑

k

1 − 〈Pk〉ψ
〈Pk〉ψ

∑

j

|〈PkDjPk〉ψ|2 ≤ 0 (37)

where M denotes an average over an ensemble of theories. The monotonic
decrease (37) implies localisation of the state vector in state space, in a time
which depends on the details of the environmental entaglement, and specifi-
cally on the so-called effective interaction rates Rk ≡ ∑

j |〈PkDjPk〉ψ|2, which
are positive semi-definite quantities, characteristic of the system. This local-
isation seems therefore a rather generic feature of the Lindblad stochastic
decoherence (22). We remark, however, that in some specific cases of environ-
mental entaglement, such a localisation may not be complete, and one may
obtain pointer states (i.e. minimum uncertainty coherent states) from deco-
herence [46]. This is an important topic, which however we shall not dwell
upon in these lectures.

2.7 Non-Critical String Decoherence:
a Link between Decoherent Quantum Mechanics and Gravity?

There is an interesting connection between the above-mentioned models of
decoherence with non-critical string theory. The latter is viewed as a non-
equilibrium version of string theory, the equilibrium “points” corresponding
to the critical strings. In these lectures we shall not describe in detail the
corresponding formalism, but we shall rather give a comprehensive outline of
the approach, and concentrate on those aspects of the framework that are
relevant for our purposes here. For details we refer the interested reader to
the literature [2, 47].

The basic idea [2, 48] is the identification of the target time in non-critical
strings with a world-sheet renormalization group scale, the Liouville field zero
mode. Non-critical strings are described, in a first-quantised framework, by
world-sheet sigma models with non-conformal background fields {gi}. The
corresponding two-dimensional world-sheet action is then given schematically
by:

Sσ = S∗ +
∫

Σ

giVi (38)

where S∗ is a two-dimensional conformal world-sheet action, corresponding
to a critical string theory, and the second term on the right hand side of
(38) represents deformations from this “conformal point”. The operators Vi

are the vertex operators, which describe the string excitations correspond-
ing to the background fields gi, over which the string propagates in tar-
get space time. This set may contain gravitons, dilatons, gauge fields, etc.,
{gi} = {Gµν , Φ,Aµ . . . }. The important thing to notice is that the back-
ground space-time fields gi appear as couplings of the two-dimensional σ-
model theory.
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The non conformal nature of the backgrounds implies that the world-
sheet renormalization group (RG) β-functions βi = dgi/dlnµ, where µ is a
two-dimensional RG scale, are non zero. For a critical string βi = 0, which
determines the “consistent” target space backgrounds over which the string
propagates. These are the equilibrium “points” in the (infinite dimensional)
space of string theories, spanned by the “coordinates” {gi}.

For consistency of the world-sheet theory, such non conformal backgrounds
require dressing with the Liouville mode, an extra σ-model field, playing the
rôle of a target-space coordinate. This field restores conformal invariance, at
the cost of enlarging the target space by one extra dimension [47], whose rôle
is played by the world sheet zero mode of the Liouville field. Depending on
the kind of deformation, the Liouville mode could be space-like or time-like in
target space. In these lectures we shall be interested in the time-like Liouville
mode case. The Liouville zero mode then can be identified with the target time
in a consistent way [2, 47], which in some cases is forced upon us dynamically,
due to minimization, upon such an identification, of the effective potential of
the low-energy field theory [49]. In this way, the low-energy theory does not
have two times.

Since the Liouville mode may be viewed as a world-sheet RG scale lnµ, we
have a situation in which a target time variable is identified with a σ-model
RG scale. The irreversibility of the latter has been proven for unitary theories
by means of the Zamolodchikov’s c-theorem [50], but is expected to hold
also for non-unitary ones, due to the presence of a cutoff scale on the world-
sheet, which is associated with “loss” of information due to modes with two-
dimensional momenta beyond the cutoff [51]. This guarantees a microscopic
time irreversibility, in a non trivial way.

Formally, in Liouville strings, the world-sheet correlators of vertex opera-
tors are identified with well-defined $-matrix elements rather than scattering
amplitudes. The non-factorisability of the $-matrix into proper S-matrix am-
plitudes, $ �= SS†, is obtained by noting that in Liouville strings, which by
definition propagate on non-conformal backgrounds, one may define the Li-
ouville zero mode world-sheet path integral in a steepest-descent fashion by
means of the curve indicated in Fig. 2 [2, 47, 48]. Upon the identification of
the Liouville zero mode with time, such a curve resembles closed-time-paths
in non-equilibrium field theories. It is the short-distance world-sheet singular-
ities (UV) near the origin of the curve of Fig. 2 that cause the aforementioned
non factorizability of the $ matrix. One may link the breathing world sheet,
arising from the steepest-descent path of the Liouville mode, to a “bounce”
on the infrared (IR, large world-sheet area) limit [48], implying an irreversible
RG flow from the ultraviolate to infrared fixed points of the world-sheet sys-
tem. Details are given in the literature [2, 47], where we refer the interested
reader for details. For our purposes we only mention that this property links
the time irreversibility of the Liouville mode, stemming from world-sheet RG
properties, to fundamental properties of space-time $-matrix elements, in a
similar fashion to the analysis in [37].
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Fig. 2. Left Picture: Steepest-descent curve for Liouville zero mode path integration,
in the complex plane obtained after complexifying the world-sheet area A. Upon the
identification of this mode with target time, such curves resemble closed time paths
of non equilibrium field theories, in agreement with the non-equilibrium nature of the
Liouville string. Right Picture: The “breathing world-sheet”, as a result of the path
on the left. The target-space irreversibility arises from a “bounce” interpretation of
this process

The theory space “coordinates”/backgrounds fields gi become quantum
operators upon summing up world-sheet genera [2]; decoherence in this the-
ory space is induced precisely by the non vanishing β-functions, that is the
departure from the conformal point [2]. To see this one invokes the princi-
ple of world-sheet renormalization group invariance of target-space quantities
with physical significance for the string propagating in such non-conformal
backgrounds. One such quantity is the density matrix of this string matter
ρs. The RG invariance implies that d

dtρs = 0, where t ≡ lnµ is the world-sheet
RG scale.

In the quantum theory this equation reads [2, 48]:

ρ̇s = i[ρs,H]+ : βjGji[gi, ρs] : (39)

where the overdot denotes partial derivative with respect to t,H is the effective
low-energy string Hamlitonian, and Gij = z2z2〈Vi(z)Vj(0)〉 is the Zamolod-
chikov’s metric in “theory space” [47]. The notation : · · · : denotes appropriate
ordering of the quantum operators.

Equation (39) has similar form to that of a ‘decoherent evolution’ in the
parameter t. Clearly, for critical backgrounds βi = 0, and hence the evolution
in RG space does not imply any such “decoherence”. However, this deco-
herence would acquire physical significance only if the identification of the
scale t with the real target time variable in string theory holds [2]. This is
not a trivial issue, and in fact it can be shown that it does not hold for any
non conformal deformation. However, as already mentioned, there are physi-
cally interesting cases, among which strings in de Sitter space times [35], to
be discussed separately in the next subsection, or colliding brane cosmolo-
gies [49], which are non conformal backgrounds in string theory, and in which
the above-mentioned identification of time with the world-sheet RG scale,
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that is the Liouville zero mode, occurs due to dynamical reasons, leading to
minimization of energy.

Under such an identification, the RG evolution (39) becomes a real tem-
poral evolution for the reduced density matrix of a string interacting with
the non conformal background, which leads to the presence of decoherence
terms proportional to the RG βi �= 0. Using (39) it can be shown [2] that such
Liouville-string decoherence has the following properties:

(i) Conservation of Probability,
(ii) Von-Neumann entropy monotonic increase: one calculates the relevant

rate as:
∂

∂t
(Trρlnρ) = βiGijβ

j (Trρlnρ) (40)

which is positive semi-definite, since βiGijβ
j ≥ 0 due to Zamolodchikov’s

c-theorem for unitary theories or its extension for non-unitary ones [51].
(iii) Energy conservation on the average, since

∂

∂t
〈〈H〉〉 =

∂

∂t

(
∂βi

∂gi

)

= 0 (41)

due to the fact that there is no explicit RG scale t dependence on the βi

function, due to renormalizability of the σ-model. However, a word of cau-
tion should be placed here. In some cases, in particular logarithmic con-
formal field theories, such as D-particle recoil [48], where the short-distance
limit of two deformation operators contain explicit logarithms Vi(z)Vj(z) ∼
lnzcijkVk/|z− z|2, there is explicit t dependence in the Operator Product Ex-
pansion coefficients appearing in the perturbative expansion of the β-function
in powers of coupling constants gi [52]. For instance, in the recoil problem,
the anomalous dimension coefficients are t-dependent [48]. In such cases, the
energy conservation on the average may be spoiled.

This type of Liouville-string decoherence leads to “localisation” in theory
space gi [2], which can be seen as follows: the RG β-functions are expressed as
a power series in the coordinates/background fields gi, βi = Ci

i1...in
gi1 . . . gin .

The linear term is the anomalous dimension term. In a weak field expansion,
i.e. when gi are assumed sufficiently weak so that perturbation theory holds,
one may assume to a good approximation βi � yigi, with yi the anomalous
scaling dimension of the σ-model coupling/background field gi. Note also that
this is an exact result (in terms of a gi expansion) in some non conformal
cosmological backgrounds of string theory, such as de Sitter space, i.e. a space
time with a non zero cosmological constant Λ > 0. In such a case, the graviton
β-function, to order α′ = M−2

s , with Ms the string mass scale, is given by
the Ricci tensor: βµν = α′Rµν = Λgµν , and thus is linear in the graviton
background. We shall examine this case in some detail in the next subsection.

In such linearised cases, one may choose the antisymmetric quantum order-
ing prescription which leads to a double commutator structure in the theory
space coordinate operators gi, so that (39) reads:



CPT Violation and Decoherence in Quantum Gravity 265

ρ̇s = i[ρs,H] + yigi[gi, ρs] , (42)

where we have used the fact that, to leading order in gi, the Zamolodchikov
“metric in theory space” Gij � δij +O(g2), which can always be arranged by
an appropriate choice of a Renormalization scheme [47].

Comparing (42) with (14), (17) we observe that we are encountering here
exactly an analogous situation, but instead of energy driven or position lo-
calisation decoherence models, we have a non-critical string theory induced
decoherence. Since gi are generalised “position vectors” in theory space, the
same arguments leading to localisation of the state vector in those models will
lead here to “localisation in theory space gi”. From a physical viewpoint this
would imply the emergence of the equilibrium target space of string theories
in a dynamical way, due to evolution of a non critical string theory to those
equilibrium points. Moreover, the double commutator structure in (42) will
also lead to variances (∆gi)2 for the background fields gi, expressing the back
reaction of string matter on those backgrounds. In the next subsection we
shall examine a concrete and physically interesting example of such a situa-
tion, that of a de Sitter space time background. As we shall discuss below,
in such a case one also obtains an interesting case of CPT Violation of un-
conventional form, which may be related to some energy-driven decoherence
models mentioned above [40, 41].

2.8 Cosmological CPTV?

One of the reasons that make me prefer the Violation of CPT via the $ ma-
trix decoherence approach over other approaches to CPT Violation, concerns
a novel type of CPT Violation at a global scale, which may characterize our
Universe. This has been proposed in [35], and was given the name cosmolog-
ical CPT Violation. This type of CPTV is prompted by recent astrophysical
Evidence for the existence of a Dark Energy component of the Universe. See
Fig. 3 for instance, there is direct evidence for a current era acceleration of
the Universe, based on measurements of distant supernovae SnIa [53], which
is supported also by complementary observations on Cosmic Microwave Back-
ground (CMB) anisotropies (most spectacularly by the recent data of WMAP
satellite experiment) [54].

Best fit models of the Universe from such combined data appear at present
consistent with a non-zero, positive cosmological constant Λ �= 0. Such a Λ-
universe will eternally accelerate, as it will enter eventually an inflationary
(de Sitter) phase again, in which the scale factor will diverge exponentially
a(t) ∼ e

√
Λ/3t, t→ ∞. This implies that there exists a cosmological horizon.

The existence of such horizons implies incompatibility with a S-matrix: no
proper definition of asymptotic state vectors is possible, and there is always an
environment of d.o.f. crossing the horizon. This situation may be considered
as dual to that of a black hole, depicted in Fig. 1: in that case the asymptotic
observer was in the exterior of the black hole horizon, in the cosmological case
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Fig. 3. Recent observational evidence for Dark Energy of the Universe (upper left
figure: evidence from SnIa [17], upper right figure: evidence from CMB measure-
ments [18]) and a pie graph (lower central figure) of the energy budget of our world
according to these observations

the observer is inside the horizon. However, both situations are characterized
by the lack of an invertible scattering matrix, hence the above-described the-
orem by Wald [37] on $-matrix and CPTV applies [35], and thus CPT is
violated, at a global scale, due to a cosmological constant Λ > 0.

It has been argued in [35] that such a violation is described effectively by
a modified temporal evolution of matter in such a Λ-universe, which is given
by

∂tρ = [ρ,H] + O(ΛMs)ρ (43)

where Λ is a dimensionless cosmological constant in four dimensions, andMs is
the quantum gravity scale (which may be different from the four-dimensional
Planck scale, see discussion below).

This form has been derived in the above-described context of non critical
strings. Indeed, a de Sitter space time constitutes a non conformal string
background, and according to the ideas presented in the previous subsection
the temporal evolution of string matter in such a space time is described
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by the decohering evolution (39). Since, as mentioned previously, the main
source of departure from conformal symmetry comes from the graviton gµν

background, whose βµν = Λgµν , one actually has the evolution (42), with
the double commutaror structure for the background gµν . The order of the
decoherence parameter γ, then, in such a case is:

γ ∼ ΛMs(∆gµν)2 , (44)

where Ms is the string scale, and Λ is a dimensionless cosmological constant
in the d-dimensional space time the string propagates on. One may use the
modern view point that our four dimensional world is actually a string mem-
brane (D-brane), embedded in a ten-dimensional target (bulk) space. The
Standard Model matter is localised on such brane worlds. In the bulk, only
fields belonging to the gravitational multiplet of the string spectrum are al-
lowed to propagate. From this view point, then, the string scale Ms may be
different from the four dimensional Planck scale. However, since string matter
is confined on the brane world, it essentially interacts effectively only with the
four-dimensional graviton fields, that lie on, or cross, our brane world, and
hence one arrives at the estimate (43), with Λ the effective four-dimensional
cosmological constant on the brane.

An important issue concerns the order of the variance of the metric fluc-
tuations (∆gµν)2. To arrive at the estimate (43) one has to assume that such
variances are of order one. However, there are models of space time foam in
string/membrane theory [7, 8], where the foam is represented as a gas of D-
particle (point-like) defects on three branes, which recoil upon interaction with
matter strings. As a result of recoil, there are induced space-time distortions,
of the form g0i ∼ ui, where i is a spatial three-brane index, and ui is the recoil
velocity of the D-particle. By momentum conservation, ui ∼ gs∆ki/Ms, where
∆ki is the momentum transfer, which is of order of the incident momentum,
k, gs is the (weak) string coupling, and Ms/gs is the mass of the D-particle.
Upon summing world-sheet genera, ui becomes an operator, which acts on
energy eigenstates, yielding appropriate eigenvalues of order gs∆ki/Ms.

Considering the case of a two state system, say neutrinos oscillating
between two energy states, with the corresponding energy difference aris-
ing from a mass-squared difference ∆m2 in the neutrino Hamiltonian H �
p+m2/p+ . . . , one has for the model of [8]:

(∆g0i)2 ∼ (gs∆E/Ms)2 = g2s(∆m2)2/E2M2
s (45)

where E is the energy of the low-energy neutrino interacting with the foam.
From (45) and (39), then, we obtain the order of the decoherence coefficient

for this case:
γ ∼ Λg2s(∆m2)2/E2Ms (46)

Comparing with (24) we observe that it is of the same form as in the energy-
driven decoherence model of [40, 41], provided the decoherence coupling with
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the environment is of order λ2 ∼ g2sΛ/Ms. In fact, one gets exactly the result
(24), if one identifies Ms/gs = MP , and assumes a Λ ∼ 1/gs, which could
be induced by quantum string loop effects (but, of course, this is too big
for a realistic cosmological constant). The equivalence with energy driven
decoherence of the D-particle foam model should not have come as a surprise,
given that the space-time distortion due to the recoil of the D-particle is driven
by the energy content of the matter probe, on account of energy conservation.

For realistic values of Λ ∼ 10−122 in Planck units, the above effects are
undetectable in any oscillation experiment. Although the order of the cos-
mological CPTV effects in this scenario is tiny, if we accept that the Planck
scale is the ordinary four-dimensional one MP ∼ 10−19 GeV, and hence un-
detectable in direct particle physics interactions, however, such cosmological-
constant induced CPTV may have already been detected indirectly through
the (claimed) observational evidence for a current-era acceleration of the Uni-
verse ! Of course, the existence of a cosmological constant brings up other
interesting challenges, such as the possibility of a proper quantization of de
Sitter space as an open system, which are still unsolved.

At this point I should mention that time Relaxation models for Dark En-
ergy, e.g. quintessence model, where eventually the vacuum energy asymptotes
(in cosmological time) an equilibrium zero value, are still currently compat-
ible with the data [56]. In such cases it might be possible that there is no
cosmological CPTV, since a proper S-matrix can be defined, due to lack of
cosmological horizons.

From the point of view of string theory the impossibility of defining a S-
matrix in de Sitter space times is very problematic, because critical strings
by their very definition depend crucially on such a concept. However, this is
not the case of non-critical string theory, which can accommodate in their
formalism Λ universes [35]. It is worthy of mentioning briefly that such non-
critical (non-equilibrium) string theory cases are capable of accommodating
models with large extra dimensions, in which the string gravitational scale
Ms is not necessarily the same as the Planck scale MP , but it could be much
smaller, e.g. in the range of a few TeV. In such cases, the CPTV effects in
(43) may be much larger, since they would be suppressed by Ms rather than
MP .

It would be interesting to study further the cosmology of such models and
see whether the global type of CPTV proposed in [35], which also entails pri-
mordial CP violation of similar order, distinct from the ordinary (observed)
CP violation which occurs at a later stage in the evolution of the Early Uni-
verse, may provide a realistic explanation of the initial matter-antimatter
asymmetry in the Universe, and the fact that antimatter is highly suppressed
today. In the standard CPT invariant approach this asymmetry is supposed to
be due to ordinary CP Violation. In this respect, I mention that speculations
about the possibility that a primordial CPTV space-time foam is responsi-
ble for the observed matter-antimatter asymmetry in the Universe have also
been put forward in [57] but from a different perspective than the one I am
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suggesting here. In [57] it was suggested that a novel CPTV foam-induced
phase difference between a space-time spinor and its antiparticle may be re-
sponsible for the required asymmetry. Similar properties of spinors may also
characterize space times with deformed Poincare symmetries [58], which may
also be viewed as candidate models of quantum gravity. In addition, other at-
tempts to discuss the origin of such an asymmetry in the Universe have been
made within the loop gravity approach to quantum gravity [59] exploring
Lorentz Violating modified dispersion relations for matter probes, especially
neutrinos, which we shall discuss below.

3 Phenomenology of CPT Violation

3.1 Order of Magnitude Estimates of CPTV

Before embarking on a detailed phenomenology of CPTV it is worth asking
whether such a task is really sensible, in other words how feasible it is to
detect such effects in the foreseeable future. To answer this question we should
present some estimates of the expected effects in some models of quantum
gravity.

The order of magnitude of the CPTV effects is a highly model dependent
issue, and it depends crucially on the specific way CPT is violated in a model.
As we have seen cosmological (global) CPTV effects are tiny, on the other
hand, quantum Gravity (local) space-time effects (e.g. space time foam) may
be much larger.

Naively, Quantum Gravity (QG) has a dimensionful constant: GN ∼
1/M2

P , MP = 1019 GeV. Hence, CPT violating and decohering effects may
be expected to be suppressed by E3/M2

P , where E is a typical energy scale
of the low-energy probe. This would be practically undetectable in neutral
mesons, but some neutrino flavour-oscillation experiments (in models where
flavour symmetry is broken by quantum gravity), or some cosmic neutrino
future observations might be sensitive to this order: for instance, in models
with LV, one expects modified dispersion relations (m.d.r.) which could yield
significant effects for ultrahigh energy (1019 eV) ν from Gamma Ray Bursts
(GRB) [60], that could be close to observation. Also in some astrophysical
cases, e.g. observations of synchrotron radiation from Crab Nebula or Vela
Pulsar, one is able to constraint electron m.d.r. almost near this (quadratic)
order [7].

However, resummation and other effects in some theoretical models may
result in much larger CPTV effects of order: E2

MP
. This happens, e.g., in some

loop gravity models [3], or in some (non-critical) stringy models of quantum
gravity involving open string excitations [25]. Such large effects may already
be accessible in current experiments, and most of them are excluded by cur-
rent observations. Indeed, the Crab nebula synchrotron constraint [11] for
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instance already excludes such effects for electrons. Nevertheless, similar ef-
fects for photons are still escaping exclusion at present, and in view of possible
violations of the equivalence principle, which might occur in some theoretical
models of foam [7], according to which only photons are susceptible to such
QG-induced m.d.r., the last word on minimal suppression QG effects has not
been spoken yet.

On the other hand, as we discussed previously, in some models of deco-
herence [41] one may have single Planck mass suppression, 1/MP , however
the decoherence parameters γ depend on the energy variance, rather than the
average energy of the probe, ∆E = E2 − E1 between, say, the two energy
eigenstates of a two-state system, such as neutral kaon, or two-generation
neutrino oscillations in hierarchical neutrino models, γ ∼ (∆E)2/MP . This
will also be undetectable in oscillation experiments in the foreseeable future,
despite the minimal Planck scale suppression of the effect in this case.

From the above discussion it is therefore clear that we are in need of guid-
ance by experiment in our quest for the order of decoherence or other non-
trivial quantum gravity effects, since theoretically the situation is far from
being resolved. Since very little is known about such models, it is important
to obtain as much experimental information on bounds of the relevant para-
meters as possible. Hopefully, this will help us focusing our future research in
the phenomenology of quantum gravity on the right track.

3.2 Mnemonic Cubes for CPTV Phenomenology

When CPT is violated there are many possibilities, due to the fact that C,P
and T may be violated individually, with their violation independent from one
another. This was emphasized by Okun [61] some years ago, who presented
a set of mnemonic rules for CPTV phenomenology, which are summarized
in Fig. 4. In this figure I also draw a kind of Penrose cube, indicating where
the violations of CPT may come from. The diagram has to be interpreted as
follows: CPTV may come from violations of special relativity (axis 1/c), where
the speed of light does not have its value, exhibiting some sort of refractive
index in vacuo, or from departure from quantum mechanics (axis h), or from
gravity considerations, where the gravitational constant departs from its value
(axis GN ), or finally (and most likely) from quantum gravity considerations,
where all such effects may coexist.

3.3 Lorentz Violation and CPT:
The Standard Model Extension (SME)

We start our discussion on phenomenology of CPT violation by considering
CPTV models in which requirement (iii) of the CPT theorem is violated, that
is Lorentz invariance. As mentioned previously, such a violation may be a
consequence of quantum gravity fluctuations. In this case Lorentz symmetry
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is violated (LV) and hence CPT, but there is no necessarily quantum deco-
herence or unitarity loss. Phenomenologically, at low energies, such a LV will
manifest itself as an extension of the standard model in (effectively) flat space
times, whereby LV terms will be introduced by hand in the relevant lagrangian,
with coefficients whose magnitude will be bounded by experiment [23].

Such SME lagrangians may be viewed as the low energy limit of some
string theory vacua, in which some tensorial fields acquire non-trivial vac-
uum expectation values 〈Aµ〉 �= 0 , 〈Tµ1...µn

〉 �= 0. This implies a spontaneous
breaking of Lorentz symmetry by these (exotic) string vacua [23].

The simplest phenomenology of CPTV in the context of SME is done by
studying the physical consequences of a modified Dirac equation for charged
fermion fields in SME. This is relevant for phenomenology using data from
the recently produced antihydrogen factories [29, 31].

In these lectures I will not cover this part in detail, as I will concentrate
mainly on neutrinos within the SME context. It suffices to mention that for
free hydrogen H (anti-hydrogen H) one may consider the spinor ψ repre-
senting electron (positron) with charge q = −|e|(q = |e|) around a proton
(antiproton) of charge −q, which obeys the modified Dirac equation (MDE):

(iγµDµ −M − aµγ
µ − bµγ5γµ −

−1
2
Hµνσ

µν + icµνγ
µDν + idµνγ5γ

µDν)ψ = 0 (47)

whereDµ = ∂µ−qAµ, and Aµ = (−q/4πr, 0) is the Coulomb potential. CPT &
Lorentz violation is described by terms with parameters aµ , bµ , while Lorentz
violation only is described by the terms with coefficients cµν , dµν ,Hµν .
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One can perform spectroscopic tests on free and magnetically trapped
molecules, looking essentially for transitions that were forbidden if CPTV and
SME/MDE were not taking place. The basic conclusion is that for sensitive
tests of CPT in antimatter factories frequency resolution in spectroscopic
measurements has to be improved down to a range of a 1 mHz, which at
present is far from being achieved [31].

Since the presence of LV interactions in the SME affects dispersion rela-
tions of matter probes, other interesting precision tests of such extensions can
be made in atomic and nuclear physics experiments, exploiting the fact of
the existence of a preferred frame where observations take place. The results
and the respective sensitivities of the various parameters appearing in SME
are summarized in the table of Fig. 5, taken from [30]. As we see, the frame
dependence of such LV effects leads to very stringent bounds of the values
of the LV parameters in some cases, which are far more superior than the
corresponding bounds obtained at present in antihydrogen factories.
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Fig. 5. Sensitivities of CPTV and LV parameters appearing in SME/Modified Dirac
equation for charged probes, from various atomic and nuclear physics experiments
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3.4 Direct SME Tests and Modified Dispersion Relations (MDR)

Many LV Models of Quantum Gravity (QG) predict modified dispersion re-
lations relations (MDR) for matter probes, including neutrinos ν [9, 10, 60].
This leads to one important class of experimental tests using ν: each mass
eigenstate of ν has QG deformed dispersion relations, which may, or may not,
be the same for all flavours:

E2 = k2 +m2
i + fi(E,Mqg,k) , e.g. fi =

∑

α

Cα=1,2,...k
2

( |k|
Mqg

)α

(48)

There are stringent bounds on fi from oscillation experiments, as we shall
discuss below.

It must be stressed that such MDR also characterize SME, although the
origin of MDR in the approach of [9, 10, 60] is due to an induced non-trivial
microscopic curvature of space time as a result of a back reaction of matter
interacting with a stringy space time foam vacuum. This is to be contrasted
with the SME approach [23], where the analysis is done exclusively on flat
Minkowski space times, at a phenomenological level.

In general there are various experimental tests that can set bounds on
MDR parameters, which can be summarized as follows:

(i) astrophysics tests – arrival time fluctuations for photons (model indepen-
dent analysis of astrophysical GRB data [10]

(ii) Nuclear/Atomic Physics precision measurements (clock comparison, spec-
troscopic tests on free and trapped molecules, quadrupole moments
etc) [30].

(iii) antihydrogen factories (precision spectroscopic tests on free and trapped
molecules: e.g. 1S → 2S forbidden transitions) [31],

(iv) Neutrino mixing and spin-flavour conversion, a brief discussion of which
we now turn to.

3.5 Neutrinos and SME

The SME formalism naturally includes the neutrino sector. Recently a SME-
LV + CPTV phenomenological model for neutrinos has been given in [62].
The pertinent lagrangian terms are given by:

Lν
SME � 1

2
iψa,Lγ

µDµψa,L − (aL)µabψa,Lγ
µψb,L

+
1
2
i(cL)µνabψa,Lγ

µDνψb,L (49)

where a, b are flavour indices. The model has (for simplicity) no ν-mass differ-
ences. Notice that the presence of LV induces directional dependence (sidereal
effects)!
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To analyze the physical consequences of the model, one passes to an Ef-
fective Hamiltonian [62]

(Heff)ab = |p|δab +
1
|p| ((aL)µpµ − (cL)µνpµpν)ab (50)

Notice that ν oscillations are now controlled by the (dimensionless) quantities
aLL & cLLE where L is the oscillation length. This is to be contrasted with
the conventional case, where the relevant parameter is associated necessarily
with a ν-mass difference ∆m: ∆m2L/E.

There is an important feature of the SME/ν: despite CPTV, the oscillation
probabilities are the same between ν and their antiparticles, if there are no
mass differences between ν and ν̄: Pνx→νy

= Pν̄x→ν̄y
.

Experimentally, it is possible to bound LV + CPTV SME parameters in
the neutrino sector with high sensitivity, if we use data from high energy long
baseline experiments [62]. Indeed, from the fact that there is no evidence for
νe,µ → ντ oscillations, for instance, at E ∼ 100 GeV, L ∼ 10−18 GeV−1 we
conclude that aL < 10−18 GeV, cL < 10−20.

Similarly for an explanation of the LSND anomaly [63], claiming evidence
for oscillations between (ν̄µ − ν̄e) but not for the corresponding neutrinos, a
mass-squared difference of order ∆m2 = 10−19 GeV2 = 10−1 eV2 is required,
which implies that aL ∼ 10−18 GeV, cL ∼ 10−17. This would affect other
experiments, and in fact one can easily come to the conclusion that SME/ν
does not offer a good explanation for LSND, if we accept the result of that
experiment as correct, which is not clear at present.

A summary of the Experimental Sensitivities for ν’s SME parameters are
given in the table of Fig. 6, taken from [62].
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3.6 Lorentz Non-Invariance, MDR and ν-Oscillations

Models of quantum gravity predicting MDR of the type (48) for neutrinos [60,
64], with a leading order E2/Mqg modification, can be severely constrained by
a study of the induced oscillations between neutrino flavours, as a result of the
departure from the standard dispersion relations provided that the quantum-
gravity foam responsible for the MDR breaks flavour symmetry, which however
is not always the case [65].

This approach has been followed in [66], where it was shown that if
flavour symmetry is not protected in such MDR models, then the extra
terms in (48), proportional to E2/Mqg will induce an oscillation length
L ∼ 2πMqg/(αE2), where α is a phenomenological parameter that controls
the size of the effect. This should be contrasted to the Lorentz Invariant case
where LLI ∼ 4πE/∆m2, with ∆m2 the square mass difference between neu-
trino flavours. From a field theoretic view point, terms in MDR proportional
to some positive integer power of E2/Mqg may behave as non-renormalizable
operators, for instance, dimension five [67] in the case of leading order QG
effects suppressed only by a single power of Mqg.

The sensitivity of the various neutrino oscillation experiments to the para-
meter α is shown in Fig. 7 [66]. The conclusion from such analyses, therefore,
is that, if the flavour number symmetry is not protected in such MDR foam
models with minimal 1/MP suppression in the correction terms, then neutrino
observatories and long base-line experiments should have already observed
such oscillations. As remarked above, however, not all foam models that lead
to such MDR predict such oscillations [65], and hence such constraints are
highly foam-model dependent.
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3.7 Lorentz Non Invariance, MDR and ν Spin-Flavor Conversion

An interesting consequence of MDR in LV quantum gravity theories is as-
sociated with modifications to the well-known phenomenon of spin-flavour
conversion in ν interactions [68]. To be specific, we shall consider an example
of a MDR for ν provided by a Loop Gravity approach to quantum grav-
ity. According to such an approach, the dispersion relations for neutrinos are
modified to [64]:

E2
± = A2

pp
2 + ηp4 ± 2λp+m2 (51)

where Ap = 1 + κ1
�P

L , η = κ3�
2
P , λ = κ5

�P

2L2 , and L is a characteristic scale
of the problem, which can be either (i) L ∼ E−1, or (ii) L = constant.

It has been noted in [68] that such a modification in the dispersion relation
will affect the form of the spin-flavour conversion mechanism. Indeed, it is well
known through the Mikheyev-Smirnov-Wolfenstein (MSW) effect [69] that
Weak interaction Effects of ν propagating in a medium result in an energy
shift

√
2GF (2ne −nn), where ne(nn)’s denote electron (neutron) densities. In

addition to such effects, one should also take into account the interaction of ν
with external magnetic fields, B, via a radiatively induced magnetic moment
µ, corresponding to a term in the effective lagrangian: Lint = µψσµνFµνψ,
with ψ the neutrino fermionic field.

According to the standard theory, the equation for evolution describing
the spin-flavour conversion phenomenon due to the above-described medium
and magnetic moment effects for, say, two neutrino flavours (νe, νµ) is given
by:

i
d

dr







νeL

νµL

νeR

νµR





 = H







νeL

νµL

νeR

νµR





 , (52)

where the effective Hamiltonian H should be corrected in the loop gravity
case to take into account λ-effects, associated with MDR (51):

H =
















−∆m2

4p
cos2θ − λ ∆m2

4p
sin2θ µeeB µB

+
√

2GF ne

∆m2

4p
sin2θ ∆m2

4p
cos2θ − λ µB µµµB

+
√

2GF ne

µeeB µB −∆m2

4p
cos2θ + λ ∆m2

4p
sin2θ

µB µµµB ∆m2

4p
sin2θ ∆m2

4p
cos2θ + λ
















(53)

where µ ≡ µeµ, ∆m2 = m2
2 − m2

1, and B is the magnetic field. We should
notice at this stage that the above formalism refers to Dirac ν; for Majorana
ν one should replace: νiL → νi, νiR → νi. Details can be found in [68].
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For our purposes we note that the Resonant Conditions for Flavour-Spin-
flip are [68]:

νeL → νµR : 2λ+
∆m2

2p
cos2θ −

√
2GFne(rres) = 0

νµL → νeR : 2λ− ∆m
2

2p
cos2θ −

√
2GFne(rres) = 0 . (54)

One can use the above conditions to obtain bounds for λ, κi via the oscillation
probabilities for spin-flavour conversion:

PνeL→νµR
=

1
2
(1 − cos2θ̃cos2θ) , (55)

where tan2θ̃(r) = 4µB(r)E

|∆m2|cos2θ−4Eλ+2
√

2GF Ene(r)
.

To obtain these bounds the author of [68] made the following physically
relevant assumptions: (a) Reasonable profiles for solar ne ∼ n0e

−10.5r/R� ,
n0 = 85NAcm−3. (b) Also: µ ∼ 10−11µB . Then, an upper bound on λ is
obtained of order: λ ≤ 1

2

(
10−12e−10.5rres/R�eV + |∆m2|

2E

)
.

To obtain bounds on κ we need to distinguish two cases:
(I) L = universal constant : In this case, we already know from photon

dispersion tests on GRB and (AGN) [10, 64] that L ∼ 10−18 eV−1. Then,
from best-fit solar ν-oscillations induced by MSW, one may use experimental
values of ∆m2, sin22θ, and obtain the following bound on κi: κ5 < 10−25.
From atmospheric oscillations, in particular LSND experiment [63], νµ → νe
fits the data with: |∆m2| ∼ eV 2, sin22θ ∼ (0.2 − 3) × 10−3, Emax ∼ 10 MeV,
then κ5 < 10−17.

(II) L ∼ p−1 a mobile scale: In that case, from SOLAR oscillations, with
p ∼ 1−10MeV one gets κ5 = O(1 − 100), which is a natural range of values
from a quantum-gravity view point. From atmospheric oscillations, for the
maximum νE ∼ 10 MeV, and L ∼ E−1, one obtains κ5 ∼ 104, which is a very
weak bound.

The conclusion from these considerations, therefore, is that the experi-
mental data seem to favour case (II), at least from a naturalness point of
view.

3.8 ν-Flavour States and Modified Lorentz Invariance (MLI)

An interesting recent idea [70], which we would like to discuss now briefly,
arises from the observation of the peculiar way in which flavour ν states ex-
perience Lorentz Invariance. Indeed, neutrino flavour states are a superposi-
tion of mass eigenstates with standard dispersion relations of different mass.
If one computes the expectation value of the Hamiltonian with respect to
flavour states, e.g. in a simplified two-flavour scenario discussed in [70], then
one finds:
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Ee = 〈νe|H|νe〉 = ωk,1cos2θ + ωk,2sin2θ ,

Eµ = 〈νµ|H|νµ〉 = ωk,2cos2θ + ωk,1sin2θ , (56)

with θ the mixing angle.

One has: H|νi〉 = ωi|νi〉, i = 1, 2, where the ωk,i =
√

k2 +m2
i is a stan-

dard dispersion relation. However, since the sum of two square roots in not in
general a square root, one concludes that flavour states do not satisfy the stan-
dard dispersion relations. In general this poses a problem, as it would naively
imply the introduction of a preferred frame, due to an apparent violation of
the standard linear Lorentz symmetry.

The idea of [70], whose validity of course remains to be seen, but which I
find rather intriguing, and this is why I decided to include it in these lectures,
is to avoid using preferred frames by introducing instead non-linearly modified
Lorentz transformations to account for the modified dispersion relations of the
flavour states. The idea is formally similar, but physically very different, to
the approach of [13], in which, in order to ensure observer independence of
the Planck length, viewed as an ordinary length in quantum gravity, and not
as a universal coupling constant, one has to modify non linearly the Lorentz
transformations. The result is that flavour states satisfy the following MDR:

E2
i f

2
i (Ei) − k2g2i (Ei) =M2

i i = e, µ (57)

One can determine [70] the fi(Ei, θ,mi), gi(Ei, θ,mi),Mi(mi, θ) by comparing
with Ei = E(ωi,mi) above (c.f. (56).

Then, in the spirit of [13], one can identify the non-linear Lorentz trans-
formation that leaves the MDR (57) invariant: U ◦ (E,k) = (Ef,kg).

The interesting feature is that these ideas can be tested experimentally, e.g.
in β-decay experiments: N1 → N2 + e− + ν̄e, where e.g. N1 = 3H, N2 = 3He.

Energy conservation in conventional β-decay implies: EN1 = EN2 +E+Ee,
where E is the energy of e, which would unavoidably introduce a preferred
frame. However, in the non-linear LI case for flavour states, where the use of
preferred frame is avoided, this relation is modified [70]: EN1 = EN2 + E +
Eefe(Ee).

These two choices are reflected in different predictions for the endpoint of
the β-decay, that is the maximal kinetic energy the electron can carry (c.f.
Fig. 8). We refer the interested reader to [70] for further discussion on the
experimental set up to test these ideas.

From the point of view of CPTV, which is our main topic of discussion here,
I must mention that in such non-linearly modified Lorentz symmetry cases it
is not clear what form the CPT theorem, if any, takes. This is currently under
investigation [38]. In this sense, the link between CPTV and modified flavour-
state dispersion relations, and therefore the interpretation of the associated
experiments from this viewpoint, are issues which are not yet clear.
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Fig. 8. Left : Tail of tritium β-decay spectrum, for massless ν (solid) and for LI
flavour states (dashed and dot-long-dashed). Also plotted is the preferred frame case.
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2) upon which β-decay depends

3.9 CPTV and Departure from Locality for Neutrinos

As another way of violating CPT one can relax the requirement of locality.
This idea has been pursued in [81], in an attempt to present a concrete model
for CPT Violation for neutrinos, with CPTV Dirac masses, in an attempt to
explain the LSND anomalous results [63], according to which there is experi-
mental evidence for oscillations in the antineutrino sector, νe → νµ, but not
in the corresponding neutrino one. In fact, the idea of invoking CPTV Dirac
mass spectra for neutrinos in order to account for the LSND results without
invoking a sterile neutrino is due to the authors of [82] (see Fig. 9). However
no concrete theoretical model was presented there.
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Fig. 9. The CPTV neutrino spectrum proposed by Murayama-Yanagida to explain
LSND. One needs m2

ν − m2
ν̄ ∼ 0.1 ev−2 = 10−19 GeV2
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The model lagrangian of [81] reads:

S =
∫
d4xψ̄i∂µγ

µψ +
im

2π

∫
d3xdtdt′ψ̄(t)

1
t− t′ψ(t′) (58)

The on shell equations (in momentum space) for the (Dirac) spinors are:

(pµγ
µ −mε(p0))u±(p) = 0 , (59)

with ε(p0) the sign function, and

ψ+(x) = u+(p)e−ip·x, p2 = m2, p0 > 0
ψ−(x) = u−(p)e−ip·x, p2 = m2, p0 < 0 (60)

Notice that on-shell Lorentz invariance is maintained due to the presence of
(ε(p0)) but is relaxed.

As remarked in [36], however, the model of [81], although respecting
Lorentz symmetry on-shell, has correlation functions (which are in general
off-shell quantities) that do violate Lorentz symmetry, in the sense that
they transform non covariantly under Lorentz transformations. Therefore, the
CPTV in this model is ultimately connected to LV.

The two-generation non-local model of [81] seems to be marginally dis-
favoured by the current neutrino data, as claimed in [83] (see Fig. 10).

A summary of data and interpretations of current models, including those
which entail CPT violation is given in Table 1, taken from the first paper in
[83]. In that paper it has also been claimed that the recent WMAP [54] data
on neutrinos seem to disfavour 3 + 1 scenaria which conserve CPT invariance.
In my opinion one has to wait for future data from WMAP, before definite
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Fig. 10. Left: Atmospheric mν − mν (68, 90, 99%, 2 d.o.f.). Right: For solar &
reactor data (68, 90, 99%, 2 d.o.f.)
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Table 1. Interpretations of solar, atmospheric and LSND data, ordered according
to the quality of their global fit. A ∆χ2 = n2 roughly signals an incompatibility at
n standard deviations

Model & No. of Free Parameters ∆χ2 Mainly Incompatible with Main Future Test

ideal fit (no known model) 0 ?

∆L = 2 decay µ̄ → ēν̄µν̄e 6 12 Karmen TWIST

3+1: ∆m2
sterile = ∆m2

LSND 9 6+9? Bugey + cosmology? MiniBoone

3 ν and CPTV (no ∆m̄2
sun) 10 15 KamLAND KamLAND

3 ν and CPTV (no ∆m̄2
atm) 10 25 SK atmospheric ν̄µ LBL?

normal 3 neutrinos 5 25 LSND MiniBoone

2 + 2 : ∆m2
sterile = ∆m2

sun 9 30 SNO SNO

2 + 2 : ∆m2
sterile = ∆m2

atm 9 50 SK atmospheric νµ LBL

conclusions on this issue are reached, given that the current WMAP data are
rather crude in this respect. I will not go further into a detailed discussion of
this topic, as such summaries of neutrino data and their interpretations can
be found in the literature, where I refer the interested reader [84].

Before closing this section, I would like to remark that most of the theoret-
ical analyses for QG-induced CPTV in neutrinos have been done in simplified
two-flavour oscillation models. Including all three generations in the formalism
may lead to differences in the corresponding conclusions regarding sensitiv-
ity (or conclusions about exclusion) of the associated CPTV effects. In this
respect the measurements of the mixing angle angle θ13 in the immediate
future [85], as a way of detecting generic three-flavour effects, will be very
interesting. In the current phenomenology, CPT invariance is assumed for the
theoretical estimates of this parameter [86].

3.10 Four-Generation ν Models with CPTV

A natural question arises at this point, concerning (3 + 1 or 2 + 2) ν scenaria
which violate CPT symmetry. This issue has been studied recently in [87].
These authors postulated a model for CPTV with four generations for neutri-
nos which leads to different flavor mixing between ν, ν̄: νa =

∑4
i=1 U

∗
aiνi, ν̄a =

∑4
i=1 Ūaiν̄i, with U �= Ū due to CPTV. There are various cases to be studied:

– 3 + 1 models (see Figs. 11, 12): one ν mass well separated from others, sterile
ν couples only to isolated state. The relevant Oscillation probabilities are:
Pνi→νi

(|Uij |2) �= Pν̄i→ν̄i
(|Ūij |2)

Experimentally one may bound |Ūe4| and Uµ4 but there are no tight con-
straints for |Ūµ4|, Ue4. This is to be contrasted with (3 + 1)ν CPT conserv-
ing models where U = Ū . Hence (3 + 1)ν + CPTV seems still viable.



282 N.E. Mavromatos

0.1

1

10

0.0001 0.001 0.01 0.1 1

δm
2 L 

(e
V

2 )

4 |Ue4|2 |Uµ4|2

GALLEX+CDHSW
MiniBooNE

LSND+KARMEN
Bugey+CDHSW

Fig. 11. Upper bound (solid) on the νµ → νe oscillation amplitude 4|Ue4|2|Uµ4|2
from the GALLEX limit on |Ue4| and the CDHSW limit on |Uµ4| (90% C. L. results
are used in both cases). The dot-dashed line is the 99% C. L. upper bound from
Bugey and CDHSW if CPT is conserved. Also shown are the expected sensitivity
(dashed) of the MiniBooNE experiment and, for comparison, the allowed region
(within the dotted lines) for 4|Ūe4|2|Ūµ4|2 from a combined analysis of LSND and
KARMEN data, both at the 90% C. L

– 2 + 2 models (see Fig. 13): sterile ν couples to solar and atmospheric ν
oscillations. This structure is only permitted in ν̄ sector. Even with CPT
Violation, however, 2 + 2 models are strongly disfavoured by data.

Although the introduction of a fourth neutrino generation with CPTV
within conventional field theory seems to be consistent with the current neu-
trino data, however, there seems to be no concrete evidence for a forth gen-
eration from any experiment to date, including the most recent astrophysical
WMAP data, as we have seen above. This prompts one to examine alterna-
tive ways of explaining the current neutrino “anomalous data”, like LSND,
employing unconventional ways of CPT Violation by means of quantum de-
coherence, which are in principle independent of mass differences between
particle and antiparticles.

In the next subsection we shall be dealing with this topic, reviewing first
the relevant phenomenological formalism which allows direct comparison with
experiment. I will start with the phenomenology of CPT violation in neutral
mesons and neutrons, as a historical introduction to the general reader, and
then I will proceed to the neutrino case. I shall argue that minimal decoherence
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models with CPTV differences in the decoherence parameters between particle
and antiparticle sectors, but not CPTV mass differences, can account for all
existing neutrino data, including LSND results, without the need for enlarging
the neutrino sector, that is staying within three generation models.

3.11 CPTV Through QG Decoherence: Neutral Mesons

In this subsection I will discuss CPTV through decoherence, which is my
preferred way of QG-induced CPTV. As mentioned above, in this case the
matter systems are viewed as open quantum mechanical or quantum-field
theoretic systems interacting with a gravitational “environment”, consisting
of degrees of freedom inaccessible to low-energy scattering experiments. The
presence of such an environment leads to modified quantum evolution, which
however is not necessarily Lorentz Violating [33]. Thus, such an approach to
CPTV should in principle be studied separately, and indeed it is possible for
the CPTV decoherence effects to be disentangled experimentally from the LV
ones, due to the frame dependence of the latter.

Currently, the most sensitive particle physics probes of such a modifi-
cation from quantum mechanical behavior (often called “quantum mechan-
ics violation” QMV [24, 25]) are: (i) neutral kaons and B-mesons [24, 25]
and φ-, B-factories [26, 27, 28] (ii) neutron interferometry [24], (iii) ultracold
(slow) neutrons in Earth’s gravitational field, and (iv) Neutrino flavour mix-
ing, which is induced independently of masses and mass differences between
neutrino species, as we shall discuss below. In these lectures I will discuss
briefly (i),(iii) and (iv).

Let us start with the neutral Kaon case. This is a typical two-state sys-
tem of decoherence. One could follow the Lindblad parametrization [27], in
which the requirement of complete positivity would imply a single decoher-
ence parameter γ. The requirement of energy conservation on the average in
such models would then imply the double commutator structure (17) for the
decoherence term, which however would depend on the square of the energy
variance between the two energy-eigenstates of the neutral Kaon system, as in
(24). This would be too small to be detected experimentally in neutral meson
experiments and factories in the foreseeable future.

However, as argued in [71], complete positivity may not be valid in generic
models of quantum gravity, such as the non-critical string decoherence models
(39). Indeed, in that case, the decoherence terms contain the Zamolodchikov
metric 〈ViVj〉 and as such are non-linear in the probe state density matrix ρ,
given that 〈. . . 〉 = Tr(ρ . . . ) depends on it. Complete positivity for non-linear
effective theories (e.g. Hartree-Fock type, mean field approaches) is in general
a non well defined concept [72].

In fact, in the original parametrization [24] of the QG-induced decoherence
effects for the neutral Kaon system this requirement has not been imposed.
In such a paremetrization, which has also been followed in more recent, and
more complete, phenomenological analyses of this system [25, 26], in addition
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to the basic principle of entropy increase, one also imposes the requirement of
conservation of strangeness by the quantum gravity interactions. This follows
from the so-called ∆S = ∆Q rule which seems to characterise the leading-
order Kaon weak-interaction physics, which in general violates strangeness,
but the charge transfer in the neutral Kaon physics is a much more subleading
effect than the dominant CP violation effects. This feature is assumed to be
obeyed by the quantum gravity interactions [24], which are thus assume to
conserve strangeness to leading order.

According to our general discussion in Sect. 2 on the dynamical-semigroup
approach to decoherence, on which the formalism of [24] is based, for the
neutral-Kaon two-level system the non-Hamiltonian decoherence term in the
evolution equation for ρ can be parametrized by a 4 × 4 matrix δH/ αβ , where
the indices α, β, . . . enumerate the Hermitian σ-matrices σ0,1,2,3, which we

represent in the so-called K1,2 basis, defined as |K1,2〉 = 1√
2

(
|K0〉 ± |K0〉

)
.

In Neutral Kaons, the CP eigenstates are not energy (physical) eigenstates,
thereby leading to mixing. We refer the reader to the literature [24, 25] for
details of this description, noting here the following forms for the neutral kaon
Hamiltonian

H =

(
M − i

2Γ − ReM12 + i
2ReΓ12

1
2δM − i

4δΓ − iImM12 − 1
2 ImΓ12

1
2δM − i

4δΓ + iImM12 − 1
2 ImΓ12 M − i

2Γ + ReM12 − i
2ReΓ12

)

(61)
in the K1,2 basis, or

Hαβ =








−Γ − 1
2δΓ −ImΓ12 −ReΓ12

− 1
2δΓ −Γ −2ReM12 −2ImM12

−ImΓ12 2ReM12 −Γ −δM
−ReΓ12 −2ImM12 δM −Γ








(62)

in the σ-matrix basis. Above, M denotes mass parameters, Γ denotes widths,
and δ(. . . ) denotes CPTV differences between particle and antiparticle sectors,
which are due to quantum mechanical effects, such as LV etc.

As mentioned previously, we assume that the dominant violations of quan-
tum mechanics conserve strangeness, so that δH/ 1β = 0, and that δH/ 0β = 0 so
as to conserve probability. Since δH/ αβ is a symmetric matrix, it follows that
also δH/ α0 = δH/ α1 = 0. Thus, we arrive at the general parametrization

δH/ αβ =







0 0 0 0
0 0 0 0
0 0 −2α −2β
0 0 −2β −2γ





 (63)

where, as a result of the positivity of the hermitian density matrix ρ [24]

α, γ > 0, αγ > β2 . (64)
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We recall [25] that the decoherence terms violate CP, given that the latter
transformation can be expressed as a linear combination of σ2,3 in the K1,2

basis : CP = σ3 cos θ+σ2 sin θ, for some choice of phase θ. It is apparent that
none of the non-zero terms ∝ α, β, γ in δH/ αβ (63) commutes with this CP
transformation. In other words, each of the three parameters α, β, γ violates
CP. Moreover, in the problem there is evolution of pure to mixed states, as we
shall discuss below, leading, according to the theorem of [37], described above,
also to a strong form of CPT Violation. Thus, the decoherent CPTV evolution
in the neutral Kaon system leads to a much richer phenomenology than in
conventional CPT Violations within a quantum mechanical framework, in the
absence of decoherence, where the CPT may be violated only through differ-
ences in masses δM and widths δΓ between particles and antiparticles. This
is because the symmetric δH/ matrix has three parameters in its bottom right-
hand 2 × 2 submatrix, whereas the h matrix appearing in the time evolution
within quantum mechanics has only one complex CPT-violating parameter δ,

δ = − 1
2

1
2δΓ + iδM

1
2 |∆Γ | + i∆m

, (65)

where δM and δΓ violate CPT, but do not induce any mixing in the time
evolution of pure state vectors [25]. The parameters ∆m = ML −MS and
|∆Γ | = ΓS − ΓL are the usual differences between mass and decay widths,
respectively, of the long-lived KL and short-lived KS energy (physical) eigen-
states. For more details we refer the reader to the literature [25]. The above
results imply that the experimental constraints [90] on CPT Violation have to
be rethought. As we shall discuss later on, there are essential differences be-
tween quantum-mechanical CPT Violation and the non-quantum-mechanical
CPT violation induced by the effective parameters α, β, γ [24].

Useful observables are associated with the decays of neutral kaons to 2π or
3π final states, or semileptonic decays to πlν. In the density matrix formalism
introduced above, their values are given by expressions of the form [24, 25]

〈Oi〉 = Tr [Oiρ] , (66)

where the observables Oi are represented by 2 × 2 hermitian matrices. For
instructive purposes we give their expressions in the K1,2 basis

O2π =
(

0 0
0 1

)

, O3π ∝
(

1 0
0 0

)

, (67)

Oπ−l+ν =
(

1 1
1 1

)

, Oπ+l−ν̄ =
(

1 −1
−1 1

)

. (68)

which constitute a complete hermitian set. As we discuss in detail in [25],
it is possible to measure the interferecne between K1,2 decays into π+π−π0

final states with different CP properties, by restricting one’s attention to part
of the phase space Ω, e.g., final states with m(π+π0) > m(π−π0). In order
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to separate this interference from that due to KS,L decays into final states
with identical CP properties, due to CP Violation in the K1,2 mass matrix
or in decay amplitudes, we consider the difference between final states with
m(π+π0) > m(π−π0) and m(π+π0) < m(π−π0). This observable is repre-
sented by the matrix

Oint
3π =

(
0 K
K∗ 0

)

(69)

where

K ≡
[∫

m(π+π0)>m(π−π0)
dΩ − ∫

m(π+π0)<m(π−π0)
dΩ

]
A2(I3π = 2)A1(I3π = 1)

∫
dΩ|A1(I3π = 1)|2

(70)
where K is expected to be essentially real, so that the Oint

3π observable provides
essentially the same information as Oπ−l+ν −Oπ+l−ν .

In this formalism, pure K0 or K̄0 states, such as the ones used as initial
conditions in the CPLEAR experiment [89], are described by the following
density matrices

ρK0 = 1
2

(
1 1
1 1

)

, ρK̄0 = 1
2

(
1 −1

−1 1

)

. (71)

We note the similarity of the above density matrices (71) to the semileptonic
decay observables in (68), which is due to the strange quark (s) content of the
kaon K0 � s̄ → ūl+ν, K̄0 � s → ul−ν̄, and our assumption of the validity of
the ∆S = ∆Q rule.

One can apply the above formalism to compute the time evolution of
certain quantities that are of relevance to experiment [89], being directly ob-
servable. These are asymmetries associated with decays of an initial K0 beam
as compared to corresponding decays of an initial K̄0 beam

A(t) =
R(K̄0

t=0 → f̄) −R(K0
t=0 → f)

R(K̄0
t=0 → f̄) +R(K0

t=0 → f)
, (72)

where R(K0 → f) ≡ Tr [Ofρ(t)], denotes the decay rate into the final state f ,
given that one starts from a pure K0 at t = 0, whose density matrix is given in
(71), and R(K̄0 → f̄) ≡ Tr [Of̄ ρ̄(t)] denotes the decay rate into the conjugate
state f̄ , given that one starts from a pure K̄0 at t = 0. One considers the
following set of asymmetries: (i) identical final states: f = f̄ = 2π: A2π , A3π,
(ii) semileptonic : AT (final states f = π+l−ν̄ �= f̄ = π−l+ν), ACPT (f =
π+l−ν̄, f = π−l+ν), A∆m.

Typically, for instance when the final states are 2π, one has a time evolu-
tion of the decay rate R2π: R2π(t) = cS e−ΓSt +cL e−ΓLt +2cI e−Γt cos(∆mt−
φ), where S = short-lived, L = long-lived, I = interference term, ∆m =
mL − mS , Γ = 1

2 (ΓS + ΓL). One may define the decoherence parameter
ζ = 1 − cI√

cScL
, as a measure of quantum decoherence induced in the sys-

tem. For larger sensitivities one can look at this parameter in the presence
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of a regenerator [25]. In our decoherence scenario, it can be shown [25] that
ζ depends primarily on β, hence the best bounds on β can be placed by
implementing a regenerator.

Let us illustrate the formalism by two explicit examples. We may compute
the asymmetry for the case where there are identical final states f = f̄ = 2π,
in which case the observable is given in (67). We obtain

A2π =
Tr [O2πρ̄(t)] − Tr [O2πρ(t)]
Tr [O2πρ̄(t)] + Tr [O2πρ(t)]

=
Tr [O2π∆ρ(t)]
Tr [O2πΣρ(t)]

, (73)

where we have defined: ∆ρ(t) ≡ ρ̄(t) − ρ(t) and Σρ(t) ≡ ρ̄(t) + ρ(t). We
note that in the above formalism we make no distinction between neutral
and charged two-pion final states. This is because we neglect, for simplicity,
the effects of ε′. Since |ε′/ε| <∼ 10−3, this implies that our analysis of the
new quantum-mechanics-violating parameters must be refined if magnitudes
<∼ ε′|∆Γ | � 10−6|∆Γ | are to be studied [26].

In a similar spirit to the identical final state case, one can compute the
asymmetry AT for the semileptonic decay case, where f = π+l−ν̄ �= f̄ =
π−l+ν. The formula for this observable is

AT(t) =
Tr [Oπ−l+ν ρ̄(t)] − Tr [Oπ+l−ν̄ρ(t)]
Tr [Oπ−l+ν ρ̄(t)] + Tr [Oπ+l−ν̄ρ(t)]

. (74)

Other observables are discussed in [25], where a complete phenomenological
description of CPTV decohering effects is presented.

To determine the temporal evolution of the above observables, which is
crucial for experimental fits, it is necessary to know the equations of motion
for the components of ρ in the K1,2 basis. These are [25]1

ρ̇11 = −ΓLρ11 + γρ22 − 2Re [(ImM12 − iβ)ρ12] , (75)
ρ̇12 = −(Γ + i∆m)ρ12 − 2iαIm ρ12 + (ImM12 − iβ)(ρ11 − ρ22) , (76)
ρ̇22 = −ΓSρ22 + γρ11 + 2Re [(ImM12 − iβ)ρ12] , (77)

where for instance ρ may represent ∆ρ or Σρ, defined by the initial conditions

∆ρ(0) =
(

0 −1
−1 0

)

, Σρ(0) =
(

1 0
0 1

)

. (78)

In these equations ΓL = (5.17 × 10−8σ)−1 and ΓS = (0.8922 × 10−10σ)−1

are the inverse KL and KS lifetimes, Γ ≡ (ΓS + ΓL)/2, |∆Γ | ≡ ΓS − ΓL =
(7.364±0.016)×10−15 GeV, and ∆m = 0.5351×1010σ−1 = 3.522×10−15 GeV
is the KL −KS mass difference. Also, the CP impurity parameter ε is given
by

ε =
ImM12

1
2 |∆Γ | + i∆m

, (79)

1 Since we neglect ε′ effects and assume the validity of the ∆S = ∆Q rule, in what
follows we also consistently neglect Im Γ12 [88].
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which leads to the relations

ImM12 = 1
2

|∆Γ ||ε|
cosφ

, ε = |ε|e−iφ : tanφ =
∆m

1
2 |∆Γ |

, (80)

with |ε| ≈ 2.2 × 10−3 and φ ≈ 45◦ the “superweak” phase [88].
These equations are to be compared with the corresponding quantum-

mechanical equations, which are reviewed in [25]. The parameters δM and β
play similar roles, although they appear with different relative signs in different
places, because of the symmetry of δH as opposed to the antisymmetry of the
quantum-mechanical evolution matrix H. These differences are important for
the asymptotic limits of the density matrix, and its impurity. In our approach,
one can readily show that, at large t, ρ decays exponentially to [25]:

ρL ≈
(

1 (|ε| + i2β̂ cosφ)eiφ

(|ε| − i2β̂ cosφ)e−iφ |ε|2 + γ̂ − 4β̂2 cos2 φ− 4β̂|ε| sinφ

)

, (81)

where we have defined the following scaled variables

α̂ = α/|∆Γ |, β̂ = β/|∆Γ |, γ̂ = γ/|∆Γ |. (82)

Conversely, if we look in the short-time limit for a solution of the (75) to (77)
with ρ11 � ρ12 � ρ22, we find [25]

ρS ≈
(
|ε|2 + γ̂ − 4β̂2 cos2 φ+ 4β̂|ε| sinφ (|ε| + i2β̂ cosφ)e−iφ

(|ε| − i2β̂ cosφ)eiφ 1

)

. (83)

These results are to be contrasted with those obtained within conventional
quantum mechanics

ρL ≈
(

1 ε∗

ε |ε|2
)

, ρS ≈
( |ε|2 ε
ε∗ 1

)

, (84)

which, as can be seen from their vanishing determinant, correspond to pure
KL and KS states respectively.

This is an important difference of the decoherence approach of [24] from
others, as it implies an evolution of pure states to mixed. Indeed, a pure
state will remain pure as long as Tr ρ2 = (Tr ρ)2 = Trρ = 1, or equivalently if
ρ2 = ρ as operator relations, as discussed in Sect. 2 (the normalisation Trρ = 1
expresses conservation of probability). In the case of 2 × 2 matrices Tr ρ2 =
(Tr ρ)2 − 2 det ρ, and therefore the purity condition is equivalently expressed
as det ρ = 0. In contrast, ρL, ρS in (81, 83) describe mixed states. Even in the
limit of the imposition of complete positivity, which according to the analysis
of [27], would imply α = β = 0, γ > 0, there is a non vanishing determinant
for the above matrices, indicating the difference of the decoherence model of
[24, 25] from others in the literature where purity of states has been maintained
during the evolution [40, 41].
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As mentioned above, the maximum possible order of magnitude for the
decoherence parameters |α|, |β| or |γ| that we could expect theoretically is
O(E2/MPl) ∼ O((ΛQCD or ms)2/MPl) ∼ 10−19 GeV in the neutral kaon sys-
tem. The fact that the model is different, in general, from the double commuta-
tor Lindblad model of decoherence (17), is welcome from a phenomenological
view point, given that it avoids the suppression (24) [71]. Such unsuppressed
models may characterise, for instance, the Liouville-string decoherence [2], de-
scribed above, which are thus subject to direct experimental tests in the near
future.

To make a consistent phenomenological study of the various asymmetries
discussed above, in particular to determine their time profiles and compare
them with experiment [89], it is essential to solve the coupled system of equa-
tions (75) to (77) for intermediate times. This requires approximations in pow-
ers of the decoherence parameters in order to get analytic results [25], which
we shall not describe here. Below we shall only outline the results briefly by
demonstrating the time profiles of the asymmetries A2π and AT , as well as the
asymmetry A∆m used in the CPLEAR experiment [89]. The relevant results
are outlined in Figs. 14, 15, 16.
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Fig. 14. The time-dependent asymmetry A2π for various choices of the CPT-
violating parameters: (a) dependence on α̂, (b) dependence on β̂, (c) dependence on
γ̂. The unspecified parameters are set to zero. The curve with no labels corresponds
to the standard quantum-mechanical case (α̂ = β̂ = γ̂ = 0)
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Fig. 15. The time-dependent asymmetry AT for representative choices of (a) α̂ (β̂ =

0) and (b) β̂ (α̂ = 0). The dependence on γ̂ is negligible. The flat line corresponds
to the standard case
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Fig. 16. The time-dependent asymmetry A∆m for representative choices of α̂ (β̂ =
γ̂ = 0). This asymmetry depends most sensitively only on α̂. In both panels, the
bottom curve corresponds to the standard case. In the detail (b), the dashed line
indicates the location of the minimum as α̂ is varied
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The important point in such an analysis is that CPTV due to decoherence
in neutral mesons can be disentangled from CPTV within quantum mechan-
ics, for instance due to Lorentz Violation a lá SME [23]. The experimental
tests (decay asymmetries) that can be performed in order to disentangle de-
coherence from quantum mechanical CPT violating effects are summarized in
Table 2. Experimentally, the best available bounds to date for the neutral me-
son case come from CPLEAR measurements [89] α < 4.0× 10−17 GeV, |β| <
2.3. × 10−19 GeV, γ < 3.7 × 10−21 GeV, which are not much different from
theoretically expected values in some models, α, β, γ = O(ξ E2

MP
).

Table 2. Qualitative comparison of predictions for various observables in CPT-
violating theories beyond (QMV) and within (QM) quantum mechanics. Predictions
either differ ( �=) or agree (=) with the results obtained in conventional quantum-
mechanical CP violation. Note that these frameworks can be qualitatively distin-
guished via their predictions for AT, ACPT, A∆m, and ζ

Process QMV QM

A2π �= �=
A3π �= �=
AT �= =
ACPT = �=
A∆m �= =
ζ �= =

Before closing this section it is worthy of mentioning that above we have
considered the same set of decoherence parameters α, β, γ in both particle
and antiparticle sectors. However, in view of the induced CPTV in the strong
form [37], it is not clear that the order of these two sets of parameters is the
same between particle and antiparticle sectors. Although we have no concrete
theoretical models at present, nevertheless, one may envisage cases where the
strength of the interaction with the foam is different between matter and
antimatter. An example of such a case will be seen later on, in the context
of neutrino physics. As we shall see there, minimal models of QG-induced
decoherence, with the latter being dominant only in the antiparticle sector,
will be capable of explaining current neutrino anomalous data, such as LSND
reasults [63], in a way consistent with all the other data.

3.12 EPR Entangled Neutral Meson States
and Novel Decoherence-Induced CPT Violating Effects

In experiments involving multiparticle states, such as those produced in a
φ or B factory, the fact that CPT may not be a well defined operation, as
a result of decoherence induced by quantum gravity [37], could imply novel
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effects [28], which may affect the properties of the entangled states, and as
such are unique to such situations, and absent in single particle experiments.

In conventional formulations of entangled meson states [91] one imposes the
requirement of Bose statistics for the state K0K

0
(or B0B

0
), which implies

that the physical neutral meson-antimeson state must be symmetric under the
combined operation CP, with C the charge conjugation and P the operator
that permutes the spatial coordinates. Specifically, assuming conservation of
angular momentum, and a proper existence of the antiparticle state (denoted
by a bar), one observes that, for K0K

0
states which are C-conjugates with

C = (−1)� (with � the quantum number), the system has to be an eigenstate
of P with eigenvalue (−1)�. Hence, for � = 1, we have that C = −, implying
P = −. As a consequence of Bose statistics this ensures that for � = 1 the
state of two identical bosons is forbidden [91]. As a result, the initial entangled
state K0K

0
produced in a φ factory can be written as:

|i〉 =
1√
2

(
|K0(k),K

0
(−k)〉 − |K0

(k),K0(−k)〉
)

(85)

This is the starting point of all formalisms known to date, either in the K-
system [91] or in the B-system, including those [26] where the evolution of
the entangled state is described by non-quantum mechanical terms, in the
formalism of [24]. In fact, in all these works it has been claimed that the
expression in (85) is actually independent of any assumption about CP, T or
CPT symmetries.

However, as has been alluded above, the assumptions leading to (85) may
not be valid if CPT symmetry is violated. In such a case K

0
cannot be con-

sidered as identical to K0, and thus the requirement of CP = +, imposed by
Bose-statistics, is relaxed. As a result, the initial entangled state (85) can be
parametrised in general as [28]:

|i〉 =
1√
2

(
|K0(k),K

0
(−k)〉 − |K0

(k),K0(−k)〉
)

+
ω√
2

(
|K0(k),K

0
(−k)〉 + |K0

(k),K0(−k)〉
)

(86)

where ω = |ω|eiΩ is a complex CPTV parameter, associated with the non-
identical particle nature of the neutral meson and antimeson states. This
parameter describes a novel phenomenon, not included in previous analyses.

Notice that an equation such as the one given in (86) could also be pro-
duced as a result of deviations from the laws of quantum mechanics during the
initial decay of the φ or Υ states. Thus, (86) could receive contributions from
two different effects, and can be thought off as simultaneously parametrizing
both of them.

In terms of physical (energy) eigenstates, |KS,L〉, the state (86) is written
as (we keep linear terms in the small parameters ω, δ, i.e. in the following we
ignore higher-order terms ωδ, δ2 etc.)
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|i〉 = C

[

(|KS(k), KL(−k)〉 − |KL(k), KS(−k)〉)

+ ω (|KS(k), KS(−k)〉 − |KL(k), KL(−k)〉)
]

(87)

with C =
√

(1+|ε1|2)(1+|ε2|2)√
2(1−ε1ε2)

� 1+|ε2|√
2(1−ε2)

. Notice again the presence of combina-
tions KSKS and KLKL states, proportional to the novel CPTV parameter ω.

Such terms become important when one considers decay channels. Specifi-
cally, consider the decay amplitude A(X,Y ), corresponding to the appearance
of a final state X at time t1 and Y at time t2, as illustrated in Fig. 17.

X Y
t
1

t
2

Fig. 17. A typical amplitude corresponding to the decay of, say, a φ state into final
states X, Y ; ti, i = 1, 2 denote the corresponding time scales for the appearance of
the final products of the decay

One assumes (87) for the initial two-Kaon system, after the φ decay. The
time is set t = 0 at the moment of the decay. Next, one integrates the square
of the amplitude over all accessible times t = t1 + t2, keeping the difference
∆t = t2 − t1 as constant. This defines the “intensity” I(∆t) [28]:

I(∆t) ≡ 1
2

∫ ∞

|∆t|
dt |A(X,Y )|2 (88)

In what follows we concentrate on identical final states X = Y = π+π−,
because as we shall argue they are the most sensitive channels to probe the
novel effects associated with the CPTV parameter ω. Indeed [90], the ampli-
tudes of the CP violating decays KL → π+π− are suppressed by factors of
order O(10−3), as compared to the principal decay mode of KS → π+π−.
In the absence of CPTV ω, (85), due to the KSKL mixing, such decay rates
would be suppressed. This would not be the case, however, when the CPTV
ω (86) parameter is non zero, due to the existence of a separate KSKS term
in that case (87). This implies that the relevant parameter for CPT violation
in the intensity is ω/ηX , where ηX = 〈X|KS〉/〈X|KL〉 which enhances the
potentially observed effect.

The effects of the CPTV ω on such intensities I(∆t) are indicated in
Fig. 18. We next comment on the distinguishability of the ω effect from con-
ventional background effects. Specifically, the mixing of the initial state due
to the non-identity of the antiparticle to the corresponding particle state has
similar form to that induced by a non-resonant background with C = + [91].
This latter effect is known to have a small size; estimates based on unitarity
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Fig. 18. Characteristic cases of the intensity I(∆t), with |ω| = 0 (solid line) vs
I(∆t) (dashed line) with (from top left to right): (i) |ω| = |η+−|, Ω = φ+− −
0.16π, (ii) |ω| = |η+−|, Ω = φ+− + 0.95π, (iii) |ω| = 0.5|η+−|, Ω = φ+− + 0.16π,
(iv) |ω| = 1.5|η+−|, Ω = φ+−. ∆t is measured in units of τS (the mean life-time of
KS) and I(∆t) in units of |C|2|η+−|2|〈π+π−|KS〉|4τS

bounds give a size of many orders of magnitude smaller than the C = − ef-
fect in the φ decays [88, 91]. Terms of the type KSKS (which dominate over
KLKL) coming from the φ-resonance as a result of CPTV can be distinguished
from those coming from the C = + background because they interfere differ-
ently with the regular C = − resonant contribution (i.e. (87) with ω = 0).
Indeed, in the CPTV case, the KLKS and ωKSKS terms have the same de-
pendence on the center-of-mass energy s of the colliding particles producing
the resonance, because both terms originate from the φ-particle. Their inter-
ference, therefore, being proportional to the real part of the product of the
corresponding amplitudes, still displays a peak at the resonance. On the other
hand, the amplitude of the KSKS coming from the C = + background has
no appreciable dependence on s and has practically vanishing imaginary part.
Therefore, given that the real part of a Breit-Wigner amplitude vanishes at
the top of the resonance, this implies that the interference of the C = +
background with the regular C = − resonant contribution vanishes at the top
of the resonance, with opposite signs on both sides of the latter. This clearly
distinguishes experimentally the two cases.

We continue with a brief discussion concerning the distinguishability of
the ω effect (86, 87) from non-quantum mechanical effects associated with
the evolution, as in [24]. The ω effect can be distinguished from those of the
QG-decohering evolution parameters α, β, γ, when the formalism is applied to
the entangled states φ [26, 75]. A non-quantum mechanical evolution of the
entangled Kaon state with ω = 0 has been considered in [26]. In such a case
the resulting density-matrix φ state ρ̃φ = Tr|φ〉〈φ| can be written as
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ρ̃φ = ρS ⊗ ρL + ρL ⊗ ρS − ρI ⊗ ρI − ρI ⊗ ρI

− 2β
d

(ρI ⊗ ρS + ρS ⊗ ρI) − 2β
d∗

(ρI ⊗ ρS + ρS ⊗ ρI)

+
2β
d

(ρI ⊗ ρL + ρL ⊗ ρI) +
2β
d∗

(ρI ⊗ ρL + ρL ⊗ ρI)

− iα

∆M
(ρI ⊗ ρI − ρI ⊗ ρI) −

2γ
∆Γ

(ρS ⊗ ρS − ρL ⊗ ρL)

where the standard notation ρS = |S〉〈S|, ρL = |L〉〈L|, ρI = |S〉〈L|, ρI =
|L〉〈S| has been employed, d = −∆M + i∆Γ/2, and an overall multiplica-
tive factor of 1

2
(1+2|ε|2)

1−2|ε|2cos(2φε)
has been suppressed. On the other hand, the

corresponding density matrix description of the φ state (87) in our case reads:

ρφ = ρS ⊗ ρL + ρL ⊗ ρS − ρI ⊗ ρI − ρI ⊗ ρI

− ω(ρI ⊗ ρS − ρS ⊗ ρI) − ω∗(ρI ⊗ ρS − ρS ⊗ ρI)
− ω(ρI ⊗ ρL − ρL ⊗ ρI) − ω∗(ρI ⊗ ρL − ρL ⊗ ρI)
− |ω|2(ρI ⊗ ρI + ρI ⊗ ρI) + |ω|2(ρS ⊗ ρS + ρL ⊗ ρL)

with the same multiplicative factor suppressed. It is understood that the evo-
lution of both ρ̃φ and ρφ is governed by the rules given in [24, 25, 26]. As we
can see by comparing the two equations, the terms linear in ω in our case are
antisymmetric under the exchange of particle states 1 and 2, in contrast to the
symmetry of the corresponding terms linear in β in the case of [26]. Similar
differences characterize the terms proportional to |ω|2, and those proportional
to α and γ, which involve ρI ⊗ ρI , ρI ⊗ ρI , ρS ⊗ ρS , ρL ⊗ ρL. Such differences
are therefore important in disentangling the ω CPTV effects proposed here
from non-quantum mechanical evolution effects [24, 25, 26, 27].

Finally we close this subsection with a comment on the application of this
formalism to the B factories. Although, formally, the situation is identical to
the one discussed above, however the sensitivity of the CPTV ω effect for the
B system is much smaller. This is due to the fact that in B factories there is
no particularly “good” channel X (with X = Y ) for which the corresponding
ηX is small. The analysis in that case may therefore be performed in the equal
sign dilepton channel, where the branching fraction is more important, and a
high statistics is expected.

3.13 CPTV Decoherence and Ultra Cold Neutrons

Before commencing a discussion on QG-induced decoherence in neutrinos we
would like to discuss briefly the application of the decoherence formalism
of [24] on another interesting experiment, which attracted some attention
recently, that of ultracold neutrons in the gravitational field of Earth2. The
arrangement of this experiment is demonstrated in Fig. 19.
2 The results in this section have been derived in collaboration with Elias Gravanis.
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Fig. 19. Inclined mirror ensures Parity invariance of QG modifications and hence
formalism similar to neutral kaons. A few (two here) energy states (peV energy
differences between levels) are inside the Earth’s potential well

The neutrons find themselves on a quantum-mechanical potential which
is affected by the gravitational potential of Earth, due to their masses. A few
energy states, separated by peV ∼ 10−15 eV energy differences, lie inside the
Earth’s potential well. The quantum trajectories of the neutrons are affected
by this gravitational potential in the way indicated in the figure. The neutrons
are reflected on the mirrors and are collected at the detection point. This
has already been demonstrated experimentally, measuring for the first time
gravitational effects together with quantum mechanical effects [92].

Consider for our purposes the case where two such energy states find them-
selves inside the potential well. This constitutes a two-level system, and one
may think of applying the two-state decoherence formalism to study QG in-
duced effects in such a situation, which would modify the results concering the
probabilities of finding the neutrons in one of the two available energy states
at the detection point. Like any two-state oscillation system, the respective
probabilities should be equal to 1/2 in the absence of any decoherence effects,
although in the presence of decoherence one would expect a slight bias in the
probabilities.

The quantum number which is conserved here is Parity, which however is
the case only if the mirror is inclined, so as to eliminate the effects of parity
violation induced by the presence of the Gravitational field. The Probability
of finding the neutrons in either state at the detection point indicated in
the figure can be computed following the same formalism as the two-state
parametrization of the neutral kaon system in [24], with the replacement of
the strangeness conservation by that of parity. The results read, to leading
order in the small decoherence parameters:
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Tr(ρ′$1,2) =
1
2
± 1

2
e−

α+γ
2 t sin(∆Et) , ∆E = O(peV) (89)

where t is the time.
We next remark that, if Lorentz invariance is violated by Quantum Grav-

ity, then the decoherence parameters α, γ � E2
kin

MP
, where Ekin = O(peV) is the

kinetic energy of the neutrons. This is too small to be detected in this kind
of experiment; However, in case QG decoherence respects Lorentz Symmetry,
which as mentioned above is possible [33, 34], then α, γ � m2

n

MP
. For the dura-

tion of the experiment, which is or order t ∼ msec, then, we observe that the
decoherence effects are much larger. However, at present, there seems to be no
significant sensitivity from this type of experiment, as compared with other
available tests of decoherence. Nevertheless, one cannot exclude the possibil-
ity of a significant improvement in sensitivity in similar experiments in the
foreseeable future, and this is the reason why I included this case briefly in
the present set of lectures.

3.14 CPTV Through QG Decoherence for Neutrinos:
the Most Sensitive Probe to Date

Two-Generation Models

We now come to discuss quantum-gravity decoherence in neutrinos, whose
sensitivity in this respect is far more superior than that of neutral kaons, as-
suming of course a universal nature of QG. This latter assumption, though,
requires some second thoughts, given that, as mentioned above, there are the-
oretical models of quantum space-time foam [7], in which QG effects interact
differently with various particle species.

With this in mind we next remark that, QG may induce oscillations be-
tween neutrino flavours independently of ν-masses [73, 74, 75, 76]. We be-
gin with the simplified case of two-neutrino generations, that is a two-state
system, which makes the formalism very similar to the neutral kaon case
described above. In similar spirit to the Kaon case, the energy (physical)
eigenstates of neutrinos are not flavour eigenstates, and one has mixing.

The basic formalism for decoherence-induced neutrino oscillations is de-
scribed by a QMV evolution for the density matrix of the ν, which parallels
that of neutral kaon in the case of two generations of neutrinos:

∂tρ = i[ρ,H] + δHρ (90)

where [24]

δHαβ =







0 0 0 0
0 −2α −2β 0
0 −2β −2γ 0
0 0 0 0







for energy and lepton number conservation, and
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δHαβ =







0 0 0 0
0 0 0 0
0 0 −2α −2β
0 0 −2β −2γ







if energy and lepton number are violated, but flavour is conserved (the latter
associated formally with the σ1 Pauli matrix).

Positivity of ρ, but not complete positivity, requires: α, γ > 0, αγ > β2.
The parameters α, β, γ violate CP, and CPT in general, as discussed previ-
ously.

The relevant oscillation probabilities, describing the evolution of a neutrino
flavour να, created at time t = 0, to a neutrino flavour νβ at time t, are
determined by means of the dynamical semigroup approach (32):

Pνα→νβ
(t) = Tr

(
ρα(t)ρβ

)
(91)

For our problem we have a two state system, and the computation of the
eigenvalue problem is easy. For the two cases above, we obtain after some
straightforward algebra [73]:

(A) For the flavour conserving case:
As a simplified example, consider the oscillation νe → νx (x = µ, τ or

sterile):

Pνe→νx
=

1
2
− 1

2
e−γLcos22θv − 1

2
e−αLsin22θvcos

( |m2
ν1

−m2
ν2
|

2Eν
L

)

(92)

Here L is the oscillation length and θv the mixing angle.
In the mass basis one has: |νe〉 = cosθv|ν1〉+sinθv|ν2〉, |νµ〉 = −sinθv|ν1〉+

cosθv|ν2〉. Note that in this case the mixing angle θv = 0 if and only if the
neutrinos are massless. From the above considerations, however, it is clear that
there are flavour oscillations even in the massless case, due to a non-trivial
QG parameter γ, compatible with flavour conserving formalism: 〈νe|σ1|νe〉 =
−〈νµ|σ1|νµ〉 = 2sinθvcosθv.

(B) For Energy and Lepton number conserving case:
Again, we consider a two-flavour example: νe → νx (x = µ, τ or sterile).

The relevant oscillation probability in this case is calculated to be [73]:

Pνe→νx
=

1
2
sin22θv

(

1 − e−(α+γ)Lcos
( |m2

ν1
−m2

ν2
|

2Eν
L

))

(93)

where we assumed for simplicity, and illustrative purposes, that α, β, γ �
|m2

ν1
−m2

ν2
|

2Eν
. The reader is invited to contrast this result with case (A) above.

One can use the results in the cases (A) and (B) to bound experimen-
tally ξ ≡ {α, β, γ}. At this stage the reader is invited to recall that there
exist two kinds of theoretical estimates/predictions for the order of magni-
tude of the parameters α, β, γ: An optimistic one [25], according to which
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ξ ∼ ξ0( E
GeV )n, n = 0, 2,−1, and this has a chance of being falsified in fu-

ture experiments, if the effect is there, and a pessimistic one [41], which de-
pends on the square of the neutrino mass-squared difference (24), ξ ∼ (∆m2)2

E2Mqg
,

(Mqg ∼ MP ∼ 1019 GeV), which is much smaller, and probably cannot be
accessed by immediate future neutrino oscillation experiments.

We now mention that in some models of QG-induced decoherence, com-
plete positivity of ρ(t) for composite systems, such as φ or B mesons, may be
imposed [75] (however, I must stress once more that the necessity of this
requirement, especially in a QG context where non-linear effects may be
present [25], remains to be proven). This results in an ideal Markov envi-
ronment, with: α = β = 0, γ > 0.

If this model is assumed for ν oscillations induced by QG decoher-
ence [74], then the following phenomenological parametrization can be made:
γ = γ0(E/GeV)n, n = 0, 2,−1. with E the neutrino energy.

From Atmospheric ν data one is led to the following bounds for the QG-
decoherence parameter γ (c.f. Figs. 20, 21) [74]:

(a) n = 0, γ0 < 3.5 × 10−23 GeV.
(b) n = 2, γ0 < 0.9 × 10−27 GeV.
(c) n = −1, γ0 < 2 × 10−21 GeV.

Especially with respect to case (b) the reader is reminded that the
CPLEAR bound on γ for neutral Kaons was γ < 10−21 GeV [89], i.e. the
ν-oscillation experiments exhibit much higher sensitivity to QG decoherence
effects than neutral meson experiments.

Fig. 20. Effects of decoherence (γ = γ0 = const �= 0) on the distributions of lepton
events as a function of the zenith angle ϑ
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Fig. 21. Best-fit scenarios for pure oscillations (γ = 0) (solid line) and for pure
decoherence with γ ∝ 1/E (dashed line)

Finally, I note that in [76] it was remarked that very stringent bounds
on α, β and γ (in the lepton number violating QG case) may be imposed
by looking at oscillations of neutrinos from astrophysical sources (supernovae
and AGN). The corresponding bounds on the γ parameter from oscillation
analysis of neutrinos from supernovae and AGN, if QG induces such oscil-
lations, are very strong: γ < 10−40 GeV from Supernova 1987a, using the
observed constraint [77] on the oscillation probability Pνe→νµ,τ < 0.2, and
γ < 10−42 GeV from AGN, which exhibit sensitivity to order higher than
E3/M2

qg, with Mqg ∼ MP ∼ 1019 GeV! Of course, the bounds from AGN do
not correspond to real bounds, awaiting the observation of high energy neu-
trinos from such astrophysical sources. In [76] bounds have also been derived
for the QG decoherence parameters by assuming that QG may induce neu-
trinoless double-beta decay. However, using current experimental constraints
on neutrinoless double-beta decay observables [78] one arrives at very weak
bounds for the parameters α, β, γ.

One also expects stringent bounds on decoherence parameters, but also on
deformed dispersion relations, if any, for neutrinos, from future underwater
neutrino telescopes, such as ANTARES [79], and NESTOR [80]3.

3 As far as I understand, but I claim no expertise on this issue, the NESTOR
experiment has an advantage with respect to detection of very high energy cosmic
neutrinos, which may be more sensitive probes of such quantum gravity effects.
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Three-Generation Models: Decoherence and the LSND Result

As we discussed above, two-generation CPTV mass models for neutrinos
within quantum mechanics are excluded by global fits of available data, espe-
cially solar neutrino models. This situation is not expected to change by the
inclusion of a third generation, although I must stress that, as far as I am
aware of, complete three-generations analyses of this kind have not been per-
formed as yet. Moreover, although four generation CPTV neutrino models are
still consistent with experimental data, nevertheless there seems to be no ex-
perimental evidence for a forth generation, especially after the recent WMAP
astrophysical results. On the other hand, as we have just seen, two-generation
neutrino analysis of decoherence effects did not show any spectacular results,
apart from the imposition of stringent bounds on the relevant parameters.

This prompts one to think that the extension of the decoherence formalism
to three generations of neutrinos, which from a mathematical view point is
a problem with considerable increase in technical complexity, is a futile task,
with no physical importance whatsoever. However, there are the “anomalous”
results provided by the LSND collaboration [63] on the evidence for νe → νµ

oscillations, through νe disappearance, but not for the cooresponding oscilla-
tions in the neutrino sector, which call for an explanation, if one, of course,
takes them seriously into account. These effects, as we have seen, cannot be
explained by conventional quantum field theoretic analyses, even if CPT is
assumed violated.

It is the point of this subsection to point out that, if one extends the
decoherence analysis to three generations of neutrinos and allows for CPT
Violation among the decoherence parameters, it is possible [93] to fit all the
currently availble neutrino data, including the LSND results, by simple deco-
herence models, in which the dominant decoherence parameters occur in the
antineutrino sector. It is important that in such “asymmetric” decoherence
models there is no need for enlarging the neutrino sector by a fourth genera-
tion, neither for introducing CPTV mass parameters. If the LSND results are
confirmed by future experiments, then this would be a significant result, as
it would provide for the first time a clear experimental evidence for a CPTV
decoherence event, which would be directly related to quantum gravity effects.

Let us briefly present the arguments leading to these results. Formally,
the extension of the completely positive decoherence scenario to the stan-
dard three-generation neutrino oscillations case is straightforward, and it was
described in section two. One adopts a three-state Lindblad problem, and,
following the standard procedure outlined there, one determines the corre-
sponding eigenvectors and eigenvalues, as in the two-level case examined in
the previous subsection. It is only a considerable increase in mathematical
complexity, and obscurity in the precise physical meaning of all the non-trivial
entries of the decoherence matrix that one encounters here.

The relativistic neutrino Hamiltonian Heff ∼ p2 + m2/2p, with m the
neutrino mass, is used as the effective Hamiltonian of the subsystem in the
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evolution equation (14). In terms of the generators Jµ, µ = 0, . . . 8 of the SU(3)

group, Heff can be expanded as [94]: Heff = 1
2p

√
2/3

(
6p2 +

∑3
i=1m

2
i

)
J0 +

1
2p (∆m2

12)J3 + 1
2
√

3p

(
∆m2

13 +∆m2
23

)J8, with the obvious notation ∆m2
ij =

m2
i −m2

j , i, j = 1, 2, 3.
The analysis of [94] assumed ad hoc a diagonal form for the 9× 9 decoher-

ence matrix L in (27):

[Lµν ] = Diag (0,−γ1,−γ2,−γ3,−γ4,−γ5,−γ6,−γ7,−γ8) (94)

in direct analogy with the two-level case of complete positivity [74, 75]. As
we have mentioned already, there is no strong physical motivation behind
such restricted forms of decoherence. This assumption, however, leads to the
simplest possible decoherence models, and, for our phenomenological purposes
in this work, we will assume the above form, which we will use to fit all the
available neutrino data. It must be clear to the reader though, that such a
simplification, if proven to be successful (which, as we shall argue below, is the
case here), just adds more in favor of decoherence models, given the restricted
number of available parameters for the fit in this case. In fact, any other non-
minimal scenario will have it easier to accommodate data because it will have
more degrees of freedom available for such a purpose.

Specifically we shall look at transition probabilities (91), which can be
computed in a straightforward manner within the dynamical-semigroups ap-
proach outlined previously [94]:

P (να → νβ) = Tr[ρα(t)ρβ ]

=
1
3

+
1
2

∑

i,k,j

eλktDikD−1
kj ρ

α
j (0)ρβ

i (95)

where α, β = e, µ, τ stand for the three neutrino flavors, and Latin indices run
over 1, . . . 8. The quantities λk are the eigenvalues of the matrix M appear-
ing in the evolution (27), after taking into account probability conservation,
which decouples ρ0(t) =

√
2/3, leaving the remaining equations in the form:

∂ρk/∂t =
∑

j Mkjρj . The matrices Dij are the matrices that diagonalize
M [39]. Explicit forms of these matrices, the eigenvalues λk, and consequently
the transition probabilities (95), are given in [94].

The important point to stress is that, in generic models of oscillation plus
decoherence, the eigenvalues λk depend on both the decoherence parame-
ters γi and the mass differences ∆m2

ij . For instance, λ1 = 1
2 [−(γ1 + γ2) −√

(γ2 − γ1)2 − 4∆2
12], with the notation ∆ij ≡ ∆m2

ij/2p, i, j = 1, 2, 3. Note
that, to leading order in the (small) squared-mass differences, one may replace
p by the total neutrino energy E, and this will be understood in what follows.

We now note that it is a generic feature of the λk to depend on the quan-
tities Ωij which are given by [93, 94]
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Ω12 =
√

(γ2 − γ1)2 − 4∆2
12

Ω13 =
√

(γ5 − γ4)2 − 4∆2
13

Ω23 =
√

(γ7 − γ6)2 − 4∆2
23 etc. (96)

From the above expressions for the eigenvalues λk, it becomes clear that,
when decoherence and oscillations are present simultaneously, one should dis-
tinguish two cases, according to the relative magnitudes of ∆ij and ∆γkl ≡
γk − γl: (i) 2|∆ij | ≥ |∆γk�|, and (ii) 2|∆ij | < |∆γk�|. In the former case, the
probabilities (95) contain trigonometric (sine and cosine) functions, whilst in
the latter they exhibit hyperbolic sin and cosine dependence.

Assuming mixing between the flavours, amounts to expressing neutrino
flavor eigenstates |να〉, α = e, µ, τ in terms of mass eigenstates |νi〉, i = 1, 2, 3
through a (unitary) matrix U : |να〉 =

∑3
i=1 U

∗
αi|νi〉. This implies that the

density matrix of a flavor state ρα can be expressed in terms of mass eigen-
states as: ρα = |να〉 〈να| =

∑
i,j U

∗
αiUαj |νi〉 〈νj |. From this we can determine

ρα
µ = 2Tr(ραJµ), a quantity needed to calculate the transition probabilities

(95).
The important comment [93] we would like to raise at this point is that,

when considering the above probabilities in the antineutrino sector, the re-
spective decoherence parameters γ̄i in general may be different from the cor-
responding ones in the neutrino sector, as a result of the strong form of CPT
violation. In fact, as we shall discuss next, this will be crucial for accommodat-
ing the LSND result without conflicting with the rest of the available neutrino
data. This feature is totally unrelated to mass differences between flavors.

In [94] a pessimistic conclusion was drawn on the “clear incompatibility
between neutrino data and theoretical expectations”, as followed by their
qualitative tests for decoherence. It is a key feature of the work of [93] to
point out that this point of view may not be true at all. In fact, as we shall
demonstrate below, if one takes into account all the available neutrino data,
including the final LSND results [63], which the authors of [94] did not do,
and allows for the above mentioned CPT violation in the decoherence sector,
then one will arrive at exactly the opposite conclusion, namely that three-
generation decoherence and oscillations can fit the data successfully!

As shown in [93], compatibility of all available data, including CHOOZ [95]
and LSND, can be achieved through a set of decoherence parameters γj with
energy dependences γ0

jE and γ0
j /E, with γ0

j ∼ 10−18, 10−24 (GeV)2, respec-
tively, for some j’s, and in fact the fit ends up being significantly better than
the standard one (when LSND results are included) as evidenced by an ap-
propriate χ2 analysis.

Some important remarks are in order. First of all, in the analysis of [94]
pure decoherence is excluded in three-generation scenaria, as in two generation
ones, due to the fact that the transition probabilities in the case ∆m2

ij = 0
(pure decoherence) are such that the survival probabilities in both sectors are
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equal, i.e. P (να → να) = P (να → να). From (95) we have in this case [94]:

Pνe→νe
= Pνµ→νµ

� 1
3

+
1
2
e−γ3t +

1
6
e−γ8t (97)

From the CHOOZ experiment [95], for which L/E ∼ 103/3 m/MeV, we
have that 〈Pν̄e→ν̄e

〉 � 1, while the K2K experiment [96] with L/E ∼
250/1.3 km/GeV has observed events compatible with 〈Pνµ→νµ

〉 � 0.7, thereby
contradicting the theoretical predictions (97) of pure decoherence.

However, this conclusion is based on the fact that in the antineutrino sector
the decoherence matrix is the same as that in the neutrino sector. In general
this need not be the case, in view of CPT Violation, which could imply a
different interaction of the antiparticle with the gravitational environment as
compared with the particle. In fact in models where a pure state evolves to a
mixed one, one expects a CPT Violation in the strong form, according to the
theorem of [37].

In our tests we took into account this possibility, but pure decoherence can
be excluded also in this case, as it is clearly incompatible with the totality of
the available data.

In order to check our model, we have performed a χ2 comparison (as
opposed to a χ2 fit which is still pending) to SuperKamiokande sub-GeV and
multi GeV data, CHOOZ data and LSND, for a sample point in the vast
parameter space of our extremely simplified version of decoherence models.
Since we have not performed as yet a χ2-fit, the point we are selecting (rather
visually and not by a proper χ2 analysis) is not optimized to give the best
fit to the existing data. Instead, it must be regarded as one among the many
equally good members in this family of solutions, being extremely possible to
find another model that fits better the data, through a complete (and highly
time consuming) scan over the whole parameter space.

Cutting the long story short, and to make the analysis easier, we have
set [93] all the γi in the neutrino sector to zero, restricting in this way all the
dominant decoherence effects in the antineutrino sector only. For the sake of
simplicity we have assumed the form:

γ̄i = γ̄i+1 for i = 1, 4, 6 and γ̄3 = γ̄8 (98)

Later on we shall set some of the γi’s to zero. Furthermore, we have also set
the CP violating phase of the NMS matrix to zero, so that all the mixing
matrix elements become real.

With these assumptions, the otherwise cumbersome expression (see end of
section for more detailed results) for the transition probability for the anti-
neutrino sector takes the form:
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Pν̄α→ν̄β
=

1
3

+
1
2

{

ρα
1 ρ

β
1 cos

( |Ω12|t
2

)

e−γ̄1t

+ ρα
4 ρ

β
4 cos

( |Ω13|t
2

)

e−γ̄4t

+ ρα
6 ρ

β
6 cos

( |Ω23|t
2

)

e−γ̄6t

+ e−γ̄3t
(
ρα
3 ρ

β
3 + ρα

8 ρ
β
8

)
}

. (99)

where the Ωij were defined in the previous section and are the same in both
sectors (due to our choice of γi’s) and

ρα
0 =

√
2
3

ρα
1 = 2Re(U∗

α1Uα2)
ρα
2 = −2Im(U∗

α1Uα2)
ρα
3 = |Uα1|2 − |Uα2|2
ρα
4 = 2Re(U∗

α1Uα3)
ρα
5 = −2Im(U∗

α1Uα3)
ρα
6 = 2Re(U∗

α2Uα3)
ρα
7 = −2Im(U∗

α2Uα3)

ρα
8 =

√
1
3
(|Uα1|2 + |Uα2|2 − 2|Uα3|2

)
(100)

where the mixing matrices are the same as in the neutrino sector. For the
neutrino sector, as there are no dominant decoherence effects, the standard
expression for the transition probability is valid.

It is obvious now that, since the neutrino sector does not suffer from de-
coherence, there is no need to include the solar data into the fit. We are
guaranteed to have an excellent agreement with solar data, as long as we
keep the relevant mass difference and mixing angle within the LMA region.
As mentioned previously, CPT violation is driven by, and restricted to, the
decoherence parameters, and hence masses and mixing angles are the same in
both sectors, and selected to be

∆m2
12 = ∆m12

2 = 7 · 10−5 eV2 ,

∆m2
23 = ∆m23

2 = 2.5 · 10−3 eV2 ,

θ23 = θ23 = π/4, θ12 = θ12 = .45 ,
θ13 = θ13 = .05 ,

as indicated by the state of the art phenomenological analysis in neutrino
physics.
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For the decoherence parameters we have chosen (c.f. (98))

γ1 = γ2 = 2 · 10−18 · E and γ3 = γ8 = 1 · 10−24/E , (101)

where E is the neutrino energy, and barred quantities refer to the antineutri-
nos, given that decoherence takes place only in this sector in our model. All
the other parameters are assumed to be zero. All in all, we have introduced
only two new parameters, two new degrees of freedom, γ1 and γ3, and we shall
try to explain with them all the available experimental data.

In order to test our model with these two decoherence parameters in the
antineutrino sector, we have calculated the zenith angle dependence of the
ratio “observed/(expected in the no oscillation case)”, for muon and electron
atmospheric neutrinos, for the sub-GeV and multi-GeV energy ranges, when
mixing is taken into account. The results are shown in Fig. 22. where, for the
sake of comparison, we have also included the experimental data.

As bare-eye comparisons can be misleading, we have also calculated the
χ2 value for each of the cases, defining the atmospheric χ2 as

χ2
atm =

∑

M,S

∑

α=e,µ

10∑

i=1

(Rexp
α,i −Rth

α,i)
2

σ2
αi

. (102)

Here σα,i are the statistical errors, the ratios Rα,i between the observed and
predicted signal can be written as

Rexp
α,i = N exp

α,i /N
MC
α,i (103)

(with α indicating the lepton flavor and i counting the different bins, ten
in total) and M,S stand for the multi-GeV and sub-GeV data respectively.
For the CHOOZ experiment we used the 15 data points with their statistical
errors, where in each bin we averaged the probability over energy and for
LSND one datum has been included. The results with which we hope all our
claims become crystal clear are summarized in Table 3, were we present the χ2

comparison for the following cases: (a) pure decoherence in the antineutrino
sector, (b) pure decoherence in both sectors, (c) mixing plus decoherence
in the antineutrino sector, (d) mixing plus decoherence in both sectors, and
(e) mixing only – the standard scenario.

From the table it becomes clear that the mixing plus decoherence scenario
in the antineutrino sector can easily account for all the available experimental
information, including LSND data. It is important to stress once more that
our sample point was not obtained through a scan over all the parameter
space, but by an educated guess, and therefore plenty of room is left for im-
provements. At this point a word of warning is in order: although superficially
it seems that scenario (d), decoherence plus mixing in both sectors, provides
an equally good fit, one should remember that including decoherence effects in
the neutrino sector can have undesirable effects in solar neutrinos, especially
due to the fact that decoherence effects are weighted by the distance traveled
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cos θ cos θ cos θ cos θ
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Fig. 22. Decoherence fits, from top to bottom: (a) pure decoherence in antineutrino
sector, (b) pure decoherence in both sectors, (c) mixing plus decoherence in the
antineutrino sector only, (d) mixing plus decoherence in both sectors. The dots
correspond to SK data
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Table 3. χ2 obtained for (a) pure decoherence in antineutrino sector, (b) pure
decoherence in both sectors, (c) mixing plus decoherence in the antineutrino sector
only, (d) mixing plus decoherence in both sectors, (e) standard scenario with and
without the LSND result

Model χ2 Without LSND χ2 Including LSND

(a) 980.7 980.8
(b) 979.8 980.0
(c) 52.2 52.3
(d) 54.4 54.6
(e) 53.9 60.7

by the neutrino, something that may lead to seizable (not observed!) effects
in the solar case.

One might wonder then, whether decohering effects, which affect the anti-
neutrino sector sufficiently to account for the LSND result, have any impact
on the solar-neutrino related parameters, measured through antineutrinos in
the KamLAND experiment [97]. In order to answer this question, it will be
sufficient to calculate the electron survival probability for KamLAND in our
model, which turns out to be Pν̄α→ν̄β

|KamLAND � .63, in perfect agreement
with observations. It is also interesting to notice that in our model, the LSND
effect is not given by the phase inside the oscillation term (which is pro-
portional to the solar mass difference) but rather by the decoherence factor
multiplying the oscillation term. Therefore the tension between LSND and
KARMEN [98] data is naturally eliminated, because the difference in length
leads to an exponential suppression.

Having said that, it is now clear that decoherence models (once neutrino
mixing is taken into account) are the best (and arguably the only) way to
explain all the observations including the LSND result. This scenario, which
makes dramatic predictions for the upcoming neutrino experiments, expresses
a strong observable form of CPT violation in the laboratory, and in this sense,
our fit gives a clear answer to the question as to whether the weak form of CPT
invariance (11) is violated in Nature. It seems that, in order to account for the
LSND results, we should invoke such a decoherence-induced CPT Violation,
which however is independent of any mass differences between particles and
antiparticles.

This CPT violating pattern, with equal mass spectra for neutrinos and an-
tineutrinos, if true, will have dramatic signatures in future neutrino oscillation
experiments. The most striking consequence will be seen in MiniBooNE [99],
According to our picture, MiniBooNE will be able to confirm LSND only
when running in the antineutrino mode and not in the neutrino one, as deco-
herence effects live only in the former. Smaller but experimentally accessible
signatures will be seen also in MINOS [85], by comparing conjugated channels
(most noticeably, the muon survival probability).
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We next remark that fits with decoherence parameters with energy depen-
dences of the form (101) imply that the exponential factors eλkt in (95) due to
decoherence will modify the amplitudes of the oscillatory terms due to mass
differences, and while one term depends on L/E the other one is driven by
L ·E, where we have set t = L, with L the oscillation length (we are working
with natural units where c = 1).

The order of the coefficients of these quantities, γ0
j ∼ 10−18, 10−24 (GeV)2,

found in our sample point, implies that for energies of a few GeV, which are
typical of the pertinent experiments, such values are not far from γ0

j ∼ ∆m2
ij .

If our conclusions survive the next round of experiments, and therefore if
MiniBOONE experiment [99] confirms previous LSND claims, then this may
be a significant result.

Indeed, one would be tempted to speculate that, if the above estimate
holds, and the decoherence coefficients are proportional to the neutrino mass-
squared differences, this could even indicate that the neutrino mass differences
themselves might be due to quantum gravity decoherence, in the sense of en-
vironmental contributions to the effective neutrino Hamiltonian appearing in
the decoherent evolution (14), which could mascarade themselves as mass
terms. Theoretically it is still unknown how the neutrinos acquire a mass,
or what kind of mass (Majorana or Dirac) they possess. There are scenaria
in which the mass of neutrino may be due to some peculiar backgrounds of
string theory for instance. If the above model turns out to be right we might
then have, for the first time in low energy physics, an indication of a direct
detection of a quantum gravity effect, which disguised itself as an induced
decohering neutrino mass difference. Notice that in our sample point only an-
tineutrinos have non-trivial decoherence parameters γi, for i = 1 and 3, while
the corresponding quantities in the neutrino sector vanish. This implies that
there is a single cause for mass differences, the decoherence in antineutrino
sector, which is compatible with common mass differences in both sectors.
This would be very interesting, if true.

Finally, before closing, we would like to remark on extensions of the above
phenomenologiocal model for decoherence by including non-diagonal terms in
the decoherence matrix Lµν . As mentioned above, the physical significance
of such extensions is not clear, and indeed it cannot be clear from simple
phenomenological analyses like the one presented here. One needs a detailed
knoweldge of the QG decoherence effects so as to obtain such an understand-
ing.

Nevertheless one may test the phenomenological efficiency of the simple
parametrisation of [93, 94] by comparing the results on the oscillation proba-
bilities versus models where off diagonal terms are included in the decoherence
matrix. As a simple example, consider the following form of the decoherence
matrix [38]:
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M =














L11 −∆12 + L12 0 0 0 0 0 0

∆12 + L12 L22 0 0 0 0 0 0

0 0 L33 0 0 0 0 0

0 0 0 L44 −∆13 + L45 0 0 0

0 0 0 ∆13 + L45 L55 0 0 0

0 0 0 0 0 L66 −∆23 + L67 0

0 0 0 0 0 ∆23 + L67 L77 0

0 0 0 0 0 0 0 L88














(104)

where M is the matrix appearing in the decoherent evolution (31). It is again
a straightforward but tedious exercise to determine the matrix which diago-
nalises M and find the eigenvalues and eigenvectors of M, which determine
the oscillation probabilities (95). Defining Γij as

Γ12 ≡
√

(L11 − L22)2 + 4L2
12 − 4∆2

12 (105)

and similarly for the other elements, and taking notice of the fact that Γij

are similar to the Ωij of the diagonal decoherence case (96), with the only
difference being an extra positive term (L2

12 etc.) under the sqare root, we can
compute the corresponding oscillation probabilities (95). For completeness we
give here the relevant expression, which allows the interested reader to derive
the diagonal case expressions by setting the off-digonal elements of Lµν equal
to zero. We have:

Pνα→νβ (t) =
1

3
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1

2
e
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Assuming Γij to be imaginary, as in the diagonal case, taking sin
(

|Γij |t
2

)
≈ 0,

and recalling (100), we observe that, with real values for the elements of the
mixing matrix U, one obtains the same form for the oscillation probability as
in [93], provided the choice (101) is made for the diagonal elements:

Pνα→νβ
(t) =

1
3

+
1
2
e

(L11+L22)
2

(
ρα
1 ρ

β
1

)
cos

( |Γ12|t
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)

+ e
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2
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4 ρ
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4
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+ e
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2
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6 ρ
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8 ρ
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the difference being that Γij , as noted earlier (105), is of a slightly different
form from the respective Ωij (96), due to the presence of the off-diagonal
elements L12 �= 0 etc. Notice from (105) that there is a tendency of the off
diagonal elements of the decoherence matrix to reduce the effects of the neu-
trino mass squared difference ∆2

ij . Thus, this sort of extension beyond the
diagonal form of the decoherence matrix (94) will affect the magnitude of the
oscillation length, as compared to the diagonal case.

It is straightforward to use such parametrizations to obtain bounds on the
extra decoherence parameters by comparison with data. We stress again, that,
due to CPT Violation, the above probabilities may differ between particles and
antiparticles sectors insofar as the order of magnitude of the corresponding de-
coherence parameters is concerned. Moreover, in view of our comments above
on the possible contributions of a decohering environment to the Hamiltonian
terms in (14), it is also of great theoretical and phenomenological interest to
consider the case of modified dispersion relations for neutrinos simultaneously
with the above-described decoherence effects, and compare with current ex-
perimental limits. Such modifications may indeed have a common origin with
the decohering effects, the interactions with the space time foam. In view of
the effects (105) on the oscillation length, analyses like the one in [66], bound-
ing the coefficients of modified dispersion relations by means of their effects
on neutrino oscillations, need therefore to be rethought.

4 Conclusions

In these lectures I discussed various theoretical ideas and phenomenological
tests of possible CPT Violation induced by quantum gravity. From this expo-
sition it becomes clear, I hope, that CPT Violation may not be an academic
issue, and indeed it may characterize a natural theory of quantum gravity.

There are several probes of CPT Violation and there is no single figure of
merit for it. Neutrinos seem to provide the most stringent constraints on CPT
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Violation through quantum decoherence to date, which in some cases are much
stronger than constraints from neutral meson experiments and factories. In
this sense neutrinos may provide a very useful guide in our quest for a theory
of Quantum Gravity.

Neutrino oscillation experiments provide stringent bounds on many quan-
tum gravity models entailing Lorentz Invariance Violation. There are also
plenty of low energy nuclear and atomic physics experiments which yield strin-
gent bounds in models with Lorentz (LV) and CPT Violation (notice that the
frame dependence of LV effects is crucial for such high sensitivities). It is my
firm opinion that neutrino factories, when built, will undoubtedly shed light
on such important and fundamental issues and provide definitive answers to
many questions related to LV models of quantum space time.

However, as I repeatedly stressed during these lectures, Quantum Gravity
may exhibit Lorentz Invariant (and hence frame independent) CPTV De-
coherence. Theoretically, the presence of an environment may be consistent
with Lorentz Invariance. This scenario is still compatible with all the existing
ν data, including LSND “anomalous” results, within three generation mod-
els, and without the need for introducing matter-antimatter mass differences.
Of course the order of the decoherence parameters of such models is highly
model dependent, and, hence, at present it is the experiment that may guide
the theory insofar as properties and estimates of QG decoherence effects are
concerned. It is interesting to remark that, in cases where quantum gravity
induces neutrino oscillations between flavours or violates lepton number, the
sensitivity of experiments looking for astrophysical neutrinos from extragalac-
tic sources may exceed the order of 1/M2

P in the respective figures of merit,
and thus is far more superior than the sensitivities of meson factories and
nuclear and atomic physics experiments as probes of quantum mechanics.

However, as I remarked previously, the reader should be alert to the fact
that there is no single figure of merit for CPT Violation; thus, as we have seen,
there may be novel CPTV effects unrelated, in principle, to LV and locality
violations, which are associated with modifications of EPR correlations. Such
effects may be inapplicable to neutrinos, and thus testable only in meson
factories or other situations involving entangled states, e.g. in quantum optics.

Clearly much more work, both theoretical and experimental, is needed
before definite conclusions are reached on this important research topic, called
phenomenology and theory of CPT Violation. I personally believe that this
issue lies at the heart of a complete and realistic theory of quantum gravity.
For instance, CPT and its Violation is certainly an issue associated with DSR
theories, discussed in this School, and non-commutative geometries, which
we did not discuss here, but which, as I mentioned in the beginning of the
lectures, is also a very active and rich field of research towards a theory of
quantum gravity.

In this respect, I believe firmly that theoretical and phenomenological re-
search on sensitive probes of CPT and quantum mechanics, such as photons
from extraglactic sources, neutrinos and neutral mesons, could soon make im-
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portant contributions to our fundamental quest for understanding the quan-
tum structure of space time. Neutrino research certainly constitutes a very
interesting and rapidly developing area of fundamental physics, which already
provides fruitful collaboration between astrophysics and particle physics, and
which, apart from the exciting results on non-zero neutrino masses which has
yielded so far, may still hide even further surprises waiting to be discovered
in the near future. But other probes, such as photons and neutral mesons,
may also prove invaluable in this respect, especially if QG effects discriminate
between particle species, a possibility, which as I mentioned in these lectures,
may not be so unrealistic.

Let me close, therefore, these lectures with the wish that by the year 2015,
when the physics community will be summoned to celebrate the centennial
from the development of General Relativity, the dynamical theory of curved
space-time geometries, we shall have obtained some concrete experimental in-
dications on what is going on in Physics near the Planck scale. Let us sincerely
hope that this exciting prospect will not remain only a wish for the years to
come.
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1 Introduction

Our understanding of spacetime has undergone some major changes in the last
hundred years. Before last century, spacetime was regarded as nothing more
than a passive and static arena in which events took place. Early last century,
Einstein’s general relativity changed that viewpoint and promoted spacetime
to an active and dynamical entity. Nowadays, many physicists also believe
that spacetime, like all matter and energy, undergoes quantum fluctuations.
Following John Wheeler, many of us think that space is composed of an ever-
changing arrangement of bubbles called spacetime foam, a.k.a. quantum foam.
To understand the terminology, let us follow Wheeler and consider the follow-
ing simplified analogy which he gave in a gravity conference at the University
of North Carolina in 1957. Imagine yourself flying an airplane over an ocean.
At high altitude the ocean appears smooth. But as you descend, it begins
to show roughness. Close enough to the ocean surface, you see bubbles and
foam. Analogously, spacetime appears smooth on a large scale, but on suffi-
ciently small scales, it will appear rough and foamy, hence the term “spacetime
foam.” Many physicists believe the foaminess is due to quantum fluctuations
of spacetime, hence the alternative term “quantum foam.” If spacetime in-
deed undergoes quantum fluctuations, the fluctuations will show up when we
measure a distance (or a time duration), in the form of uncertainties in the
measurement. Conversely, if in any distance (or time duration) measurement,
we cannot measure the distance (or time duration) precisely, we interpret this
intrinsic limitation to spacetime measurements as resulting from fluctuations
of spacetime itself.

As we will see below, the physics of spacetime foam is intimately con-
nected to that of black holes. It is related to the holographic principle and has
bearings on the physics of clocks and computation. As far as (quantum grav-
ity) phenomenology, the theme of this Winter School, is concerned, we can
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only say that it is not easy, but by no means impossible, to detect spacetime
foam.[1] We encourage the students to find better ways to do so.

Before we proceed, we should mention that the approach to the physics
of quantum foam adopted here is very conservative: the only ingredients we
use are quantum mechanics and general relativity. Hopefully, by considering
only distances (time durations) much larger than the Planck length (time) or
energies (momenta) much smaller than Planck energy (momentum), a semi-
classical treatment of gravity suffices and a bona fide theory of quantum grav-
ity is not needed.

We should also make it clear at the outset that we make no assumptions
on the high energy regime of the ultimate quantum gravity theory. We refrain
from speculating on violations or deformations of Lorentz symmetry and the
consequent systematically modified dispersion relations, involving a coefficient
of fixed magnitude and fixed sign, which many people believe are unavoidably
induced by quantum gravity. (In the terminology of 2, these quantum gravity
effects are called “systematic” effects.) The only quantum gravity effects we
are concerned with in these lectures are those due to quantum fuzziness –
uncertainties involving fluctuating magnitudes with both ± signs, perhaps like
a fluctuation with a Gaussian distribution about zero. (In the terminology of
2, these effects are called “non-systematic” effects.)

If quantum fluctuations do make spacetime foamy on small spacetime
scales, then it is natural to ask: How large are the fluctuations? How foamy is
spacetime? Is there any theoretical evidence of quantum foam? And how can
we detect quantum foam? In what follows, we address these questions.

The outline of this manuscript is as follows:

– Section 2: Quantum fluctuations of spacetime.
By analysing a gedanken experiment for spacetime measurement, we show,
in Subsec. 2.1, that spacetime fluctuations scale as the cube root of distances
or time durations. In Subsect. 2.2, we show that this cube root dependence
is consistent with the holographic principle. Subsection 2.3 is devoted to a
comparison of this peculiar dependence on distances or time durations with
the well-known random-walk problem and other quantum gravity models.
In Subsect. 2.4, we consider the cumulative effects of individual spacetime
fluctuations.

– Section 3: Clocks, computers, and black holes.
We discuss how quantum foam affects the physics of clocks (Subsect. 3.1)
and computation (Subsect. 3.2), and show that the physics of spacetime
foam is intimately connected to that of black holes (Subsect. 3.3). In par-
ticular, the same underlying physics governs the computational power of
black hole quantum computers. In Subsect. 3.3, we give the results for ar-
bitrary spacetime dimensions.

– Section 4: Energy-momentum uncertainties.
Just as there are uncertainties in spacetime measurements, there are also
uncertainties in energy-momentum measurements. This topic of energy-
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momentum uncertainties is given a brief treatment. Two physical
implications are given: dispersion relations are modified, and (as a con-
sequence) energy-dependent speed of light fluctuates around c.

– Section 5: Spacetime foam phenomenology.
Various proposals to detect quantum foam are considered; they include:
phase incoherence of light from distant galaxies (Subsect. 5.1), gamma ray
bursts (Subsect. 5.2), laser-based interferometry (Subsect. 5.3), and ultra-
high energy cosmic ray events (Subsect. 5.4).

– Section 6: Summary and Conclusions.

To make the lectures informative and more or less self-contained, “preparatory
remarks”, “side remarks”, and “further remarks”, too long for footnotes, are
inserted when their additions are warranted. All such remarks are contained
inside square brackets [ ]. They are somewhat out of the lectures’ main line
of development. On notations, the subscript “P” denotes Planck units. Thus
lP ≡ (�G/c3)1/2 ∼ 10−33 cm is the Planck length, etc.

2 Quantum Fluctuations of Spacetime

The questions are: does spacetime undergo quantum fluctuations? And if so,
how large are the fluctuations? To quantify the problem, let us consider mea-
suring a distance l. The question now is: how accurately can we measure this
distance? Let us denote by δl the accuracy with which we can measure l. We
will also refer to δl as the uncertainty or fluctuation of the distance l for rea-
sons that will become obvious shortly. We will show that δl has a lower bound
and will use two ways to calculate it. Neither method is rigorous, but the fact
that the two very different methods yield the same result bodes well for the
robustness of the conclusion. (Furthermore, the result is also consistent with
well-known semi-classical black hole physics. See Sect. 3.)

2.1 Gedanken Experiment

In the first method, we conduct a thought experiment to measure l. The im-
portance of carrying out spacetime measurements to find the quantum fluc-
tuations in the fabric of spacetime cannot be over-emphasized. According to
general relativity, coordinates do not have any intrinsic meaning independent
of observations; a coordinate system is defined only by explicitly carrying out
spacetime distance measurements. Let us measure the distance between point
A and point B. Following Wigner [3], we put a clock at A and a mirror at
B. Then the distance l that we want to measure is given by the distance be-
tween the clock and the mirror. By sending a light signal from the clock to
the mirror in a timing experiment, we can determine the distance l. However,
quantum uncertainties in the positions of the clock and the mirror introduce
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an inaccuracy δl in the distance measurement. We expect the clock and the
mirror to contribute comparable uncertainties to the measurement. Let us
concentrate on the clock and denote its mass by m. Wigner argued that if it
has a linear spread δl when the light signal leaves the clock, then its position
spread grows to δl + �l(mcδl)−1 when the light signal returns to the clock,
with the minimum at δl = (�l/mc)1/2. Hence one concludes that

δl2 >∼
�l

mc
. (1)

Thus quantum mechanics alone would suggest using a massive clock to reduce
the jittering of the clock and thereby the uncertainty δl. On the other hand,
according to general relativity, a massive clock would distort the surrounding
space severely, affecting adversely the accuracy in the measurement of the
distance.

Side Remarks

[It is here that we appreciate the importance of taking into account the effects
of instruments in this thought-experiment. Usually when one wants to examine
a certain a field (say, an electromagnetic field) one uses instruments that
are neutral (electromagnetically neutral) and massive for, in that case, the
effects of the instruments are negligible. But here in our thought-experiment,
the relevant field is the gravitational field. One cannot have a gravitationally
neutral yet massive set of instruments because the gravitational charge is
equal to the mass according to the principle of equivalence in general relativity.
Luckily for us, we can now exploit this equality of the gravitational charge and
the inertial mass of the clock to eliminate the dependence on m in the above
inequality to promote (1) to a (low-energy) quantum gravitational uncertainty
relation.]

To see this, let the clock be a light-clock consisting of a spherical cavity of
diameter d, surrounded by a mirror wall of mass m, between which bounces
a beam of light (along a diameter). For the uncertainty in distance measure-
ment not to be greater than δl, the clock must tick off time fast enough that
d/c <∼ δl/c. But d, the size of the clock, must be larger than the Schwarz-
schild radius rS ≡ 2Gm/c2 of the mirror, for otherwise one cannot read the
time registered on the clock. From these two requirements, it follows that

δl >∼
Gm

c2
. (2)

Thus general relativity alone would suggest using a light clock (light as op-
posed to massive) to do the measurement.

Side Remarks

[This result can also be derived (see the first paper in [4]) in another way. If the
clock has a radius d/2 (larger than its Schwarzschild radius rS), then δl, the
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error in the distance measurement caused by the curvature generated by the
mass of the clock, may be estimated by a calculation from the Schwarzschild
solution. The result is rS multiplied by a logarithm involving 2rS/d and rS/(l+
d/2). For d � rS , one finds δl = 1

2rS log d+2l
d and hence (2) as an order of

magnitude estimate.]
The product of (2) with (1) yields

δl >∼ (ll2P )1/3 = lP

(
l

lP

)1/3

, (3)

where lP = (�G/c3)1/2 is the Planck length. (Note that the result is indepen-
dent of the mass of the clock and, thereby, one would hope, of the properties
of the specific clock used in the measurement.) The end result is as simple as it
is strange and appears to be universal: the uncertainty δl in the measurement
of the distance l cannot be smaller than the cube root of ll2P . Reference [4]
Obviously the accuracy of the distance measurement is intrinsically limited by
this amount of uncertainty or quantum fluctuation. We conclude that there
is a limit to the accuracy with which one can measure a distance; in other
words, we can never know the distance l to a better accuracy than the cube
root of ll2P . Similarly one can show that we can never know a time duration
τ to a better accuracy than the cube root of τt2P , i.e.,

δτ >∼ (τt2P )1/3 , (4)

where tP ≡ lP /c ∼ 10−44sec is the Planck time. The spacetime fluctuation
translates into a metric fluctuation over a distance l and a time interval τ
given by

δgµν >∼ (lP /l)2/3, (tP /τ)2/3 , (5)

respectively. (For a discussion of the related light-cone fluctuations, see [5].)
Because the Planck length is so inconceivably short, the uncertainty or

intrinsic limitation to the accuracy in the measurement of any distance, though
much larger than the Planck length, is still very small. For example, in the
measurement of a distance of one kilometer, the uncertainty in the distance is
to an atom as an atom is to a human being. Even for the size of the observable
universe (∼1010 light-years), the uncertainty is only about 10−13 cm.

Further Remarks

[Fluctuations Imply Non-locality? Fluctuations in spacetime imply that the
metrics can be defined only as averages over local regions, and this gives rise to
some sort of non-locality. Ahluwalia [4] has observed that spacetime measure-
ments described above alter the spacetime metric in a fundamental manner
and that this unavoidable change in the metric destroys the commutativity
(and hence locality) of position measurement operators. The gravitationally-
induced nonlocality, in turn, suggests a modification of the fundamental com-
mutators.]
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Further Remarks

[On Two Length Scales: An Analogy. In hindsight it is not too surprising that
the uncertainty δl involves two length scales, viz., the fundamental length
lP and the length l itself. There is an analogous result that is relevant for
a long thin ruler which can be regarded as a one-dimensional chain of N
ions with a spring between successive ions. By a straightforward quantum
mechanical calculation [4], one can show that the uncertainty in the length
of the ruler scales as

√
N in the high-temperature limit and as

√
logN in the

zero temperature limit. But N = l/a where l is the length of the ruler and a
is the lattice constant (playing the role of lp in the measurement of distance),
so one concludes that the uncertainty of the ruler’s length depends on two
length scales, viz., l and a.]

Further Remarks

[Energy Density Fluctuations Associated with Spacetime Fluctuations. This
may be a red herring, but the question has been raised [6] whether the metric
fluctuations corresponding to (5) yield an unacceptably large fluctuation in
energy density. To see that the associated energy density fluctuation is actually
extremely (therefore acceptably) small [7], let us regard metric fluctuations as
gravitational waves quantized in a box of volume V (with � = 1 and c = 1):

δg(l) = lP
∑

k

A(k)√
2V k

coskl , (6)

with the corresponding energy density fluctuations given by δρ = V −1
∑

A(k)2k (summation over two different polarizations is understood). In order
for (6) to give (5), one needs A(k) ∼ V −1/2l

−1/3
P k−11/6. Replacing the sum-

mation over k in δρ, in the large volume limit, by an intgral, and using the
Planck mass mP as the upper limit, we get [7]

δρ ∼ mP /V , (7)

an utterly negligible energy density.]

2.2 The Holographic Principle

Alternatively we can estimate δl by applying the holographic principle. Refer-
ence [8, 9] but for completeness, let us first recall some physics of black holes
and then a heuristic derivation of the holographic principle.

Preparatory Remarks

[Black Holes. In our discussion of the gedanken experiment in Subsect. 2.1,
we have already used that fact that a chargeless non-rotating black hole of
mass m has a size given by
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– Size rS ∼ Gm/c2, the Schwarzschild radius. It is also known that a black
hole behaves as if it has

– Temperature T ∼ �c
kBrS

where kB is the Boltzman’s constant;

– Entropy S ∼ kB
r2

S

l2P
, i.e., area in Planck units;

– Finite lifetime TBH ∼ G2m3

�c4 , first found by Hawking.

Property 3 follows from properties 1 & 2 with the aid of the thermodynamic
relation dS = dE

T . For a black hole of one centimeter diameter, its entropy is
about 1066 bits.

Property 4 can be derived by treating a black hole as a black body for
which the emitted power (i.e., c2 dm

dt ) per unit area is given by the Stefan’s
law: c2

area
dm
dt ∼ σT 4 where σ ∼ k4

B/(�
3c2) is the Stefan-Boltzmann constant.

The more massive a black hole is, the longer it lasts; a solar-mass black hole
is estimated to last 1066 years. (By comparison, the present age of the Uni-
verse is only about 13.7 billion years.) Unless mini-black holes exist, it will
be impossible to directly check Hawking’s result for black hole lifetime. But
if the physics behind spacetime foam and black holes is the same, as will be
shown in Subsect. 3.3, detection of spacetime foam can be taken as an indi-
rect confirmation of Hawking’s black hole evaporation process. In passing, we
mention that there is increasing evidence that black holes do exist; in partic-
ular, supermassive black holes (with mass ranging from a million to a billion
times the solar mass) exist at the center of many galaxies, including our own.]

Preparatory Remarks

[Holographic Principle. In essence, the holographic principle [10] says that
although the world around us appears to have three spatial dimensions, its
contents can actually be encoded on a two-dimensional surface, like a holo-
gram. In other words, the maximum entropy of a region of space is given
(aside from multiplicative factors of order 1 which we ignore as we have so
far) by its surface area in Planck units. This result can be derived by appeal-
ing to black hole physics and the second law of theromodynamics as follows.
Consider a system with entropy S0 inside a spherical region Γ bounded by
surface area A. Its mass must be less than that of a black hole with horizon
area A (otherwise it would have collapsed into a black hole). Now imagine
a spherically symmetric shell of matter collapsing onto the original system
with just the right amount of energy so that together with the original mass,
it forms a black hole which just fills the region Γ . The black hole so formed
has entropy S ∼ A/l2P . But according to the second law of thermodynamics,
S0 ≤ S. It follows immediately that S0

<∼ A/l2P , and hence the maximum
entropy of a region of space is bounded by its surface area, as asserted by the
holographic principle.]

With the aid of the above preparatory remarks, we are now ready to
estimate δl by applying the holographic principle. Reference [8, 9] To be more
precise, let us consider a spatial region measuring l by l by l. According to the
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holographic principle, the number of degrees of freedom that this cubic region
can contain is bounded by the surface area of the region in Planck units,
i.e., l2/l2P , instead of by the volume of the region as one may naively expect.
This principle is strange and counterintuitive, but is supported by black hole
physics in conjunction with the laws of thermodynamics (as shown above in
the “Preparatory Remarks”), and it is embraced by both string theory and
loop gravity, two top contenders of quantum gravity theory. So strange as it
may be, let us now apply the holographic principle to deduce the accuracy
with which one can measure a distance.

First, imagine partitioning the big cube into small cubes [see Fig. 1]. The
small cubes so constructed should be as small as physical laws allow so that
intuitively we can associate one degree of freedom with each small cube. In
other words, the number of degrees of freedom that the region can hold is
given by the number of small cubes that can be put inside that region. But
how small can such cubes be? A moment’s thought tells us that each side of a
small cube cannot be smaller than the accuracy δl with which we can measure
each side l of the big cube. This can be easily shown by applying the method
of contradiction: assume that we can construct small cubes each of which has
sides less than δl. Then by lining up a row of such small cubes along a side of
the big cube from end to end, and by counting the number of such small cubes,

l

l

δl

δl

δl

δl

l

Fig. 1. Partitioning a big cube into small cubes. The big cube represents a region
of space measuring l by l by l. The small cubes represent the smallest physically-
allowed cubes measuring δl by δl by δl that can be lined up to measure the length of
each side of the big cube. Strangely, the size of the small cubes is not universal, but
depends on the size of the big cube. A simple argument based on this construction
leads to the holographic principle
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we would be able to measure that side (of length l) of the big cube to a better
accuracy than δl. But, by definition, δl is the best accuracy with which we can
measure l. The ensuing contradiction is evaded by the realization that each of
the smallest cubes (that can be put inside the big cube) indeed measures δl by
δl by δl. Thus, the number of degrees of freedom in the region (measuring l by
l by l) is given by l3/δl3, which, according to the holographic principle, is no
more than l2/l2p. It follows that δl is bounded (from below) by the cube root
of ll2P , the same result as found above in the gedanken experiment argument.
Thus, to the extent that the holographic principle is correct, spacetime indeed
fluctuates, forming foams of size δl on the scale of l. Actually, considering the
fundamental nature of spacetime and the ubiquity of quantum fluctuations,
we should reverse the argument and then we will come to the conclusion that
the “strange” holographic principle has its origin in quantum fluctuations of
spacetime.1

Side Remarks

[It is quite possible that the effective dimensional reduction of the the number
of degrees of freedom (embodied in the holographic principle) may have a
dramatic effect on the ultraviolet behaviour of a quantum field theory.]

2.3 Quantum Gravity Models

The consistency of the uncertainties in distance measurements with the holo-
graphic principle is reassuring. But the dependence of the fluctuations in dis-
tance on the cube root of the distance is still perplexing. To gain further insight
into this strange state of affairs, let us compare this peculiar dependence on
distance with the well-known one-dimensional random-walk problem. For a
random walk of steps of equal size, with each step equally likely to either di-
rection, the root-mean-square deviation from the mean is given by the size of
each step multiplied by the square root of the number of steps. It is now sim-
ple to concoct a random-walk model [12, 13] for the fluctuations of distances
in quantum gravity. Consider a distance l, which we partition into l/lP units
each of length lP . In the random-walk model of quantum gravity, lP plays the
role of the size of each step and l/lP plays the role of the number of steps. The
fluctuation in distance l is given by lP times the square root of l/lP , which
comes out to the square root of llP . This is much bigger than the cube root
of ll2P , the fluctuation in distance measurements found above.

The following interpretation of the dependence of δl on the cube root of
l now presents itself. As in the random-walk model, the amount of fluctu-
ations in the distance l can be thought of as an accumulation of the l/lP
individual fluctuations each by an amount plus or minus lP . But, for this
1 Recently, Scardigli and Casadio [11] claim that the expected holographic scaling

seems to hold only in (3+1) dimensions and only for the “generalized uncertainty
principle” found above for δl.



330 Y. Jack Ng

case, the individual fluctuations cannot be completely random (as opposed to
the random-walk model); actually successive fluctuations must be entangled
and somewhat anti-correlated (i.e., a plus fluctuation is slightly more likely
followed by a minus fluctuation and vice versa), in order that together they
produce a total fluctuation less than that in the random-walk model. This
small amount of anti-correlation between successive fluctuations (correspond-
ing to what statisticians call fractional Brownian motion with self-similarity
parameter 1

3 ) must be due to quantum gravity effects. Since the cube root
dependence on distance has been shown to be consistent with the holographic
principle, we will, for the rest of this subsection, refer to this case that we
have found (marked by an arrow in Fig. 2) as the holography model.

correlation
0

l1/3l
2/3
Pl0l1P l1/2l

1/2
P l1l0P

Fig. 2. Lower bounds on δl for the various quantum gravity models. The fluctuation
of the distance l is given by the sum of l/lP fluctuations each by plus or minus lP .
Spacetime foam appears to choose a small anti-correlation (i.e., negative correlation)
between successive fluctuations, giving a cube root dependence in the number l/lp
of fluctuations for the total fluctuation of l (indicated by the arrow). It falls between
the two extreme cases of complete randomness, i.e., zero (anti-)correlation (corre-

sponding to δl ∼ l1/2l
1/2
P ) and complete anti-correlation (corresponding to δl ∼ lP ).

Quantum gravity models corresponding to positive correlations between successive
fluctuations (indicated by the hatched portion) are observationally ruled out. See
“Further Remarks” in Subsect. 5.1

Side Remarks

[We leave it as an exercise (albeit a rather non-trivial one) to the students
to seek a more microscopic understanding of the holographic principle, at the
level of random walk for the random-walk model.]

On the other hand, if successive fluctuations are completely anti-correlated,
i.e., a fluctuation by plus lP is followed by a fluctuation by minus lP which
is succeeded by plus lP etc. in the pattern + − + − + − + − + − . . ., then
the fluctuation of a distance l is given by the minuscule lP , [14] independent
of the size of the distance. Thus the holography model falls between the two
extreme cases of complete randomness (square root of llP ) and complete anti-
correlation (lP ). For completeness, we mention that a priori there are also
models with correlating successive fluctuations. But these models yield unac-
ceptably large fluctuations in distance and time duration measurements – we
will see below that these models (corresponding to the hatched line to the right
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of the random-walk model shown in Fig. 2) have already been observationally
ruled out.

2.4 Cumulative Effects of Spacetime Fluctuations

Let us now examine the cumulative effects [15] of spacetime fluctuations over
a large distance. Consider a distance l, and divide it into l/λ equal parts each
of which has length λ. If we start with a fluctuation δλ from each part, the
question is how do the l/λ parts add up to δl for the whole distance l. In other
words, we want to find the cumulative factor C defined by

δl = C δλ , (8)

For the holography model, since δl ∼ l1/3l
2/3
P = lP (l/lP )1/3 and δλ ∼

λ1/3l
2/3
P = lP (λ/lP )1/3, the result is

C =
(
l

λ

)1/3

. (9)

For the random-walk model, the cumulative factor is given by C = (l/λ)1/2;
for the model corresponding to complete anti-correlation, the cumulative fac-
tor is C = 1, independent of l. Let us note that, for all quantum gravity models
(except for the physically disallowed model corresponding to complete corre-
lation between successive fluctuations), the cumulative factor is not linear in
(l/λ), i.e., δl

δλ �= l
λ . (In general, it is much smaller than l/λ). The reason for

this is obvious: the δλ’s from the l/λ parts in l do not add coherently. It
makes no sense, e.g., to say, for the completely anti-correlating model, that
δl ∼ δλ × l/λ >∼ lP l/λ because it is inconsistent to use the completely anti-
correlating model for δλ while using the completely correlating model for the
cumulative factor.

Note that the above discussion on cumulative effects is valid for any λ
between l and lP , i.e., it does not matter how one partitions the distance
l. In particular, for our holography model, one can choose to partition l into
units of Planck length lP , the smallest physically meaningful length. Then (for
λ = lP ) using δlP ∼ l1/3

P ×l2/3
P = lP , one recovers δl ∼ (l/lP )1/3×lP = l1/3l

2/3
P ,

with the dependence on the cube root of l being due to a small amount of
anti-correlation between successive fluctuations as noted above. The fact that
we can choose λ as small as the Planck length in the partition indicates that,
in spite of our earlier disclaimer, it may even be meaningful to consider, in
the semi-classical framework we are pursuing, fluctuations of distances close
to the Planck length.

Now that we know where the holography model stands among the quantum
gravity models, we will restrict ourselves to discuss this model only for the
rest of the lectures.
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3 Clocks, Computers, and Black Holes

So far there is no experimental evidence for spacetime foam, and, as we will
show shortly, no direct evidence is expected in the very near future. In view of
this lack of experimental evidence, we should at least look for theoretical cor-
roborations (aside from the “derivation” of the holographic principle discussed
in Subsect. 2.2). Fortunately such corroborations do exist – in the sector of
black hole physics (this should not come as a surprise to the experts). To
show that, we have to make a small detour to consider clocks and computers
[16, 17] first.

3.1 Clocks

Consider a clock (technically, a simple and “elementary” clock, not composed
of smaller clocks that can be used to read time separately or sequentially),
capable of resolving time to an accuracy of t, for a period of T (the running
time or lifetime of the clock). Then bounds on the resolution time and the
lifetime of the clock can be derived by following an argument very similar
to that used above in the analysis of the gedanken experiment to measure
distances. Actually, the two arguments are so similar that one can identify
the corresponding quantities. [See Table.]

The corresponding quantities in the discussion of distance measurements (first
column), time duration measurements (second column), clocks (third column), and

computers (fourth column) appear in the same row in the following Table.

Distance Time Duration Clocks Computers
Measurements Measurements

δl/c δτ t 1/ν

l/c τ T I/ν

δl2>∼�l/mc δτ2>∼�τ/mc2 t2>∼�T/mc2 Iν<∼mc2/�

δl>∼Gm/c2 δτ>∼Gm/c3 t>∼Gm/c3 ν<∼c3/Gm

l/(δl)3<∼l−2
P (δl>∼l1/3l

2/3
P ) τ/(δτ)3<∼t−2

P T/t3<∼t−2
P Iν2<∼t−2

P = c5/�G

For the discussion of clocks, one argues that at the end of the running time
T , the linear spread of the clock (of mass m) grows to δl >∼ (�T/m)1/2. But
the position uncertainty due to the act of time measurement must be smaller
than the minimum wavelength of the quanta used to read the clock: δl <∼ ct,
for the entire period T . It follows that [3, 16]

t2 >∼
�T

mc2
, (10)

which is the analogue of (1). On the other hand, for the clock to be able
to resolve time interval as small as t, the cavity of the light-clock must be
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small enough such that d <∼ ct; but the clock must also be larger than the
Schwarzschild radius 2Gm/c2 so that the time registered by the clock can be
read off at all. These two requirements are satisfied with

t >∼
Gm

c3
, (11)

the analogue of (2). One can combine the above two equations to give [16]

T/t3 <∼ t−2
P =

c5

�G
, (12)

which relates clock precision to its lifetime. Numerically, for example, for a
femtosecond (10−15 sec) precision, the bound on the lifetime of a simple clock
is 1034 years.

3.2 Computers

Preparatory Remarks

[Energies Determine the Rate of Computation. During a logical operation, the
bits in a computer go from one state to another. One can use the Heisenberg
uncertainty principle in the form ∆E∆t ≥ � to show that a quantum state
with spread in energy ∆E takes time at least ∆t = π�/2∆E to evolve to an
orthogonal state. One can further show [18, 19] that it takes a system with
average energy E at least the amount of time ∆t = π�/2E to do so. Thus the
speed of computation for a computer with total energy E distributed among
its various logic gates (labelled by l) is bounded by

∑

l

1
∆tl

≤
∑

l

2El

π�
=

2E
π�

∼ E

�
. (13)

That is, energy limits the speed of computation. We will see that a black hole
computer can saturate this bound.]

One can easily translate the relations for clocks given in the above sub-
section into useful relations for a simple computer (technically, it refers to
a computer designed to perform highly serial computations, i.e., one that is
not divided into subsystems computing in parallel). Since the resolution time
t for clocks is the smallest time interval relevant in the problem, the fastest
possible processing frequency is given by its reciprocal, i.e., 1/t. Thus if ν
denotes the clock rate of the computer, i.e., the number of operations per bit
per unit time, then it is natural to identify ν with 1/t. To identify the number
I of bits of information in the memory space of a simple computer, we recall
that the running time T is the longest time interval relevant in the problem.
Thus, the maximum number of steps of information processing is given by
the running time divided by the resolution time, i.e., T/t. It follows that one
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can identify the number I of bits of the computer with T/t.2 In other words,
the translations from the case of clocks to the case of computers consist of
substituting the clock rate of computation for the reciprocal of the resolution
time, and substituting the number of bits for the running time divided by the
resolution time. [See Table.] The bounds on the precision and lifetime of a
clock given by (10), (11) and (12) are now translated into a bound on the rate
of computation and number of bits in the computer, yielding respectively

Iν <∼
mc2

�
, ν <∼

c3

Gm
, Iν2 <∼

c5

�G
∼ 1086/sec2 . (14)

The first inequality shows that the speed of computation is bounded by the
energy of the computer divided by Planck’s constant, in agreement with the
result given by (13), found by Margolus and Levitin [18], and by Lloyd [19]
(for the ultimate limits to computation). The last bound is perhaps even more
intriguing: it requires the product of the number of bits and the square of the
computation rate for any simple computer to be less than the square of the
reciprocal of Planck time, [16] which depends on relativistic quantum gravity
(involving c, �, and G). This relation links together our concepts of infor-
mation/computation, relativity, gravity, and quantum uncertainty. The link
between information and spacetime foam is perhaps not surprising because, as
the above discussion of the holographic principle shows, the maximum amount
of information that can be put into a region of space depends on how small
the bits are, and they cannot be smaller than the foams of spacetime. So the
ultimate power of computation also depends on the structure of spacetime
foam. Numerically, the computation bound given by (14) is about seventy-six
orders of magnitude above what is available for a current lap-top computer
performing ten billion operations per second on ten billion bits, for which
Iν2 ∼ 1010/sec2.

3.3 Black Holes

Black Hole Lifetime

Now we can apply what we have learned about clocks and computers to black
holes. Reference [16, 17] let us consider using a black hole to measure time.
It is reasonable to use the light travel time around the black hole’s horizon
as the resolution time of the clock, i.e., t ∼ Gm

c3 ≡ tBH , then from (10), one
immediately finds that

T ∼ G2m3

�c4
≡ TBH . (15)

We have just recovered Hawking’s result for black hole lifetime!
2 One can think of a tape of length cT as the memory space, partitioned into bits

each of length ct.
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Black Hole Computers

Finally, let us consider using a black hole to do computations. This may
sound like a ridiculous proposition. But if we believe that black holes evolve
according to quantum mechanical laws, it is possible, at least in principle, to
program black holes to perform computations [19] that can be read out of the
fluctuations in the Hawking black hole radiation. How large is the memory
space of a black hole computer, and how fast can it compute? Applying the
results for computation derived above, we readily find the number of bits in
the memory space of a black hole computer, given by the lifetime of the black
hole divided by its resolution time as a clock, to be

I =
TBH

tBH
∼ m2

m2
P

∼ r2S
l2P
, (16)

wheremP = �/(tP c2) is the Planck mass,m and r2S denote the mass and event
horizon area of the black hole respectively. This gives the number of bits I as
the event horizon area in Planck units, in agreement with the identification
of black hole entropy. (Recall that entropy S and the number of bits I are
related by S = kBIln2.)

Side Remarks

[Recall that the only property of a black hole we have used in the analysis
of the gedanken experiment to measure distances (Subsect. 2.1) and in the
analysis of clocks (Subsect. 3.1) is that it has a size given by the Schwarz-
schild radius rS ∼ Gm/c2 (property 1 in first set of “Preparatory Remarks” in
Subsect. 2.2). Now we have recovered the results for black hole entropy (prop-
erty 3) and lifetime (property 4). Actually one can also recover the result for
black hole temperature T ∼ �c/kBrS (property 2) by using the thermody-
namic relation T = dE/dS.]

Furthermore, the number of operations per unit time for a black hole
computer is given by

Iν =
TBH

tBH
× 1
tBH

∼ mc2

�
, (17)

its energy divided by Planck’s constant, in agreement with the result found
by Lloyd [19]. It is curious that all the bounds on computation discussed
above are saturated by black hole computers. Thus one can even say that
once they are programmed to do computations, black holes are the ultimate
simple computers.

All these results reinforce the conceptual interconnections of the physics
underlying spacetime foam, black holes, and computation. It is intersting that
these three subjects share such intimate bonds and are brought together here
[see Fig. 3]. The internal consistency of the physics we have uncovered also
vindicates the simple (some would say overly simple) arguments we present
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Spacetime foam

Computation/InformationBlack hole

Iν2 ∼ c5

h̄G

Fig. 3. The quantum foam-black hole-computation/information triangle. At the
center of the triangle is the universal relation: Iν2 ∼ c5/�G, where I is the number
of bits in the memory space, and ν is the clock rate of computation of a black hole
computer. This relation is a combined product of the physics behind spacetime foam,
black holes, and computation/information

in Sect. 2 in the derivation of the limits to spacetime measurements. It is as
if Nature approves simplicity, and tries to get away with as much simplicity
as possible. Perhaps it actually follows Albert Einstein’s dictum: Everything
should be made as simple as possible, but not simpler.

Side Remarks

[It was John Wheeler who coined the terms “spacetime foam” and “black
holes”. Also famous for his phrase “its from bits”, he was among the first
physicists to recognize the importance of quantum information and quantum
computation. To honor him for the promotion of these ideas, we should per-
haps call the triangle in Fig. 3 the Wheeler Triangle.]

3.4 Results for Arbitrary Dimensions

So far we have been doing (3 + 1)-dimensional physics, but it is theoreti-
cally interesting to generalize the discussion to arbitrary (n+ 1) dimensions.
In this subsection we set c = 1 and � = 1 for convenience. In (n + 1) di-
mensions, Newton’s constant G has the dimension of [length]n−1. The corre-
sponding Schwarzschild radius is given by [20] rS ∼ (mG)

1
n−2 . One can carry

out a gedankan experiment to measure a distance as described in Subsect.
2.1. Again quantum mechanics imposes the bound δl2 >∼ l/m; but gravity
demands δln−2 >∼ mG. It follows that the uncertainty in distance measure-
ments is given by
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δl >∼ (Gl)
1
n . (18)

Next, following the argument given in Subsect. 2.2, one can alternatively use
the holographic principle (that the number of degrees of freedom in an n-
dimensional hyper-cube is bounded by ln−1/G) and the fact that the number
of small hyper-cubes inside the big hyper-cube is given by (l/δl)n, to derive
(18).3

The discussion given in Subsect. 3.3 for black holes can be duplicated for
the case of arbitrary (n+ 1) dimensions. For a black hole used as a clock, we
get

tBH ∼ (mG)
1

n−2 , TBH ∼ (mnG2)
1

n−2 , (19)

for its resolution time and its total running time respectively. Correspondingly,
the number of bits a black hole computer can hold in its memory space and
the bound on its rate of computation are respectively given by

IBH ∼ rn−1
S

G
; Iν ∼ m . (20)

For the rest of the lectures, we go back to 3 + 1 dimensions.

4 Energy-Momentum Uncertainties

Just as there are uncertainties in spacetime measurements, there are also un-
certainties in energy-momentum measurements due to spacetime foam effects.
Thus there is a limit to how accurately we can measure and know the energy
and momentum of a system. Reference [4] imagine sending a particle of mo-
mentum p to probe a certain structure of spatial extent l so that p ∼ �/l. It
follows that δp ∼ (�/l2)δl. Spacetime fluctuations δl >∼ l(lP /l)2/3 can now be
used to give

δp = βp
(
p

mP c

)2/3

, (21)

where a priori β ∼ 1. The corresponding statement for energy uncertainties
is

δE = γE
(
E

EP

)2/3

, (22)

where EP = mP c
2 ∼ 1019 GeV is the Planck energy and a priori γ ∼ 1.

We emphasize that all the uncertainties take on ± sign with equal prob-
ability (most likely, a Gaussian distribution about zero). Thus at energy-
momentum far below the Planck scale, the energy-momentum uncertainties
3 Note the somewhat different conclusions (for n �= 3) reached in [11] where a

different bound from gravity (by following an argument similar to that given in
“Side Remarks” after (2)) is used.
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are very small, suppressed by a fractional (two-thirds) power of the Planck
energy-momentum. (For example, the uncertainty in the energy of a particle
of ten trillion electron-volts is about a thousand electron-volts.) A word of
caution is in order: while the result for distance and time-interval fluctuations
has indirect support from black hole physics (and is thus reasonably trust-
worthy), the result for energy-momentum fluctuations enjoys no such support
and is probably not as reliable.

Side Remarks

[Equations (21) and (22) can also be derived by considering the coupling of
the metric to the energy-momentum tensor of a particle: (gµν + δgµν)tµν =
gµν(tµν + δtµν), where we have noted that the uncertainty in gµν can be
translated into an uncertainty in tµν . Equation (5) and p ∼ �/l can then be
used to yield (21).

Alternatively, we can consider how δp, the uncertainty of the momentum
operator p = (�/i)(∂/∂x), is associated with δx = (xl2P )1/3. For any function
f(x), (δp)f is given by

(δp)f =
(

�

i

)[

δx

(
∂2f

∂x2

)

+
(
∂f

∂x

)(
∂δx

∂x

)]

. (23)

Taking the function f(x) to be the linear momentum eigenstate f =
exp(ipx/�), we find that the minimum value of | δp | is attained at x ∼ �/p,
yielding (21).

Similar arguments yield (22) for the fluctuations of energy.]

Modified Dispersion Relations

Energy-momentum uncertainties affect both the energy-momentum conser-
vation laws and dispersion relations. Energy-momentum is conserved up to
energy-momentum uncertainties due to quantum foam effects, i.e., Σ(pµ

i +δpµ
i )

is conserved, with pµ
i being the average values of the various energy-momenta.

On the other hand the dispersion relation is now generalized to read

E2 − p2c2 − εp2c2
(
pc

EP

)2/3

= m2c4 , (24)

for high energies with E � mc2. A priori we expect ε ∼ 1 and is independent
of β and γ. But due to our present ignorance of quantum gravity, we are
not in a position to make any definite statements. In fact, it is possible that
ε = 2(β − γ), which would be the case if the modified dispersion relation is
given by (E + δE)2 − (p+ δp)2c2 = m2c4, with δp and δE given by (21) and
(22) respectively.
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A Fluctuating Speed of Light

The modified dispersion relation discussed above has an interesting conse-
quence for the speed of light. Reference [21, 22] applying (24) to the massless
photon yields

E2 � c2p2 + εE2

(
E

EP

)2/3

. (25)

The speed of (massless) photon

v =
∂E

∂p
� c

(

1 +
5
6
ε
E2/3

E
2/3
P

)

, (26)

becomes energy-dependent and fluctuates around c. For example, a photon
of ten trillion electron-volt energy has a speed fluctuating about c by one
centimeter per second.

5 Spacetime Foam Phenomenology

Because the Planck length lP ∼ 10−33 cm is so minuscule, the Planck time
tP ∼ 10−44 sec so short, and the Planck energy EP ∼ 1028 eV so high, space-
time foam effects, suppressed by Planck scales, are exceedingly small. Accord-
ingly, they are very hard to detect. The trick will be to find ways to amplify
the small effects [1].

5.1 Phase Incoherence of Light from Extra-galactic Sources

One way to amplify the minute effects is to add up many such effects, like
collecting many small raindrops to fill a reservoir. Consider light coming to
us from extragalactic sources. Over one wavelength, the phase of the light-
waves advances by 2π; but due to spacetime foam effects, this phase fluctuates
by a small amount. The idea is that the fluctuation of the phase over one
wavelength is extremely small, but light from distant galaxies has to travel a
distance of many wavelengths. It is possible that over so many wavelengths,
the fluctuations can cumulatively add up to a detectable level at which point
the phase coherence for the light-waves is lost. Loss of phase coherence would
mean the loss of interference patterns. Thus the strategy is to look for the
blurring of images of distant galaxies in powerful telescopes like the Hubble
Space Telescope. This technique to detect spacetime foam was proposed by
Lieu and Hillman [23], and elaborated by Ragazzoni and his collaborators [24].

The proposal deals with the phase behavior of radiation with wavelength
λ received from a celestial source located at a distance l away. Fundamentally,
the wavelength defines the minimum length scale over which physical quan-
tities such as phase and group velocities (and hence dispersion relations) can
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be defined. Thus, the uncertainty in λ introduced by spacetime foam is the
starting point for this analysis. A wave will travel a distance equal to its own
wavelength λ in a time t = λ/vg where vg is the group velocity of propagation,
and the phase of the wave consequently changes by an amount

φ = 2π
vpt

λ
= 2π

vp
vg
, (27)

(i.e., if vp = vg, φ = 2π) where vp is the phase velocity of the light wave.
Quantum gravity fluctuations, however, introduce random uncertainties into
this phase which is simply

δφ = 2π δ
(
vp
vg

)

. (28)

Due to quantum fluctuations of energy-momentum [4] and the modified
dispersion relations, we obtain

δ

(
vp
vg

)

∼ ±
(
E

EP

)2/3

= ±
(
lP
λ

)2/3

, (29)

where we have used vp = E/p and vg = dE/dp, and E/EP = lP /λ. We
emphasize that this may be either an incremental advance or a retardation in
the phase.

In travelling over the macroscopically large distance, l, from source to
observer an electromagnetic wave is continually subjected to random, inco-
herent spacetime fluctuations. Therefore, by our previous argument given in
Subsect. 2.4, the cumulative statistical phase dispersion is ∆φ = Cδφ with the
cumulative factor C = (l/λ)1/3, that is

∆φ = 2πa
(
lP
λ

)2/3 (
l

λ

)1/3

= 2πa
l
2/3
P l1/3

λ
, (30)

where a ∼ 1. (This is our fundamental disagreement [15] with Lieu and
Hillman who assume that the microscale fluctuations induced by quantum
foam into the phase of electromagnetic waves are coherently magnified by
the factor l/λ rather than (l/λ)1/3). Thus even the active galaxy PKS1413
+ 135, an example used by Lieu and Hillman, for which λ � 1.6 µm and l �
1.216 Gpc, is not far enough to make the light wave front noticeably distorted.
A simple calculation [15] shows that, over four billion light years, the phase of
the light waves fluctuates only by ∆φ ∼ 10−9 × 2π, i.e., only by one billionth
of what is required to lose the sharp ring-like interference pattern around
the galaxy which, not surprisingly, is observed [25] by the Hubble Telescope.
This example illustrates the degree of difficulty which one has to overcome to
detect spacetime foam. The origin of the difficulty can be traced to the inco-
herent nature of the spacetime fluctuations (i.e., the anticorrelations between
successive fluctuations).
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Further Remarks

[Ruling Out the Random-Walk Model of Quantum Gravity. But not all is lost
with Lieu and Hillman’s proposal. One can check that the proposal can be
used to rule out [15], if only marginally, the random-walk model of quan-
tum gravity, which would (incorrectly) predict ∆φ ∼ 2π(lP /λ)1/2(l/λ)1/2 =
2π(lP l)1/2/λ ∼ 10 × 2π, a large enough phase fluctuation for light from
PKS1413 + 135 to lose phase coherence, contradicting evidence of diffrac-
tion patterns from the Hubble Telescope observation. It follows that models
corresponding to correlating successive fluctuations are also ruled out.]

5.2 High Energy γ Rays from Distant GRB

For another idea to detect spacetime foam, let us recall (26) that, due to
quantum fluctuations of spacetime, the speed of light fluctuates around c
and the fluctuations increase with energy. Thus for photons (quanta of light)
emitted simultaneously from a distant source coming towards our detector,
we expect an energy-dependent spread in their arrival times. To maximize
the spread in arrival times, we should look for energetic photons from distant
sources. High energy gamma rays from distant gamma ray bursts [21] fit the
bill. So the idea is to look for a noticeable spread in arrival times for such
high energy gamma rays from distant gamma ray bursts. This proposal was
first made by G. Amelino-Camelia et al. [21] in another context.

To underscore the importance of using the correct cumulative factor to
estimate the spacetime foam effect, let us first proceed in a naive manner. At
first sight, the fluctuating speed of light δv ∼ c(E/EP )2/3 (see (26)) would
seem to yield [22] an energy-dependent spread in the arrival times of photons
of the same energy E given by δt ∼ δv(l/c2) ∼ t(E/EP )2/3, where t = l/c is
the average overall time of travel from the photon source (distance l away).
Furthermore, the modified energy-momentum dispersion relation would seem
to predict time-of-flight differences between simultaneously-emitted photons
of different energies, E1 and E2, given by δt � t(E2/3

1 −E2/3
2 )/E2/3

P . But these
results for the spread of arrival times of photons are not correct, because we
have inadvertently used l/λ ∼ Et/� as the cumulative factor instead of the
correct factor (l/λ)1/3 ∼ (Et/�)1/3. Using the correct cumulative factor, we
get a much smaller δt ∼ t1/3t

2/3
P for the spread in arrival time of the photons of

the same energy. Thus the result is that the time-of-flight differences increase
only with the cube root of the average overall time of travel from the gamma
ray bursts to our detector, leading to a time spread too small to be detectable
[1].

5.3 Interferometry Techniques

Suppressed by the extraordinarily short Planck length, fluctuations in dis-
tances, even large distances, are very small. So, to measure such fluctuations,
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what one needs is an instrument capable of accurately measuring fluctua-
tions in length over long distances. Modern gravitational-wave interferome-
ters, having attained extraordinary sensitivity, come to mind. The idea of us-
ing gravitational-wave interferometers to measure the foaminess of spacetime
was proposed by Amelino-Camelia [12] and elaborated by the author and van
Dam [8]. Modern gravitational-wave interferometers are sensitive to changes
in distances to an accuracy better than 10−18 meter. To attain such sensitiv-
ity, interferometer researchers have to contend with many different noises, the
enemies of gravitational-wave research, such as thermal noise, seismic noise,
and photon shot noise. To this list of noises that infest an interferometer, we
now have to add the faint yet ubiquitous noise from spacetime foam. In other
words, even after one has subtracted all the well-known noises, there is still the
noise from spacetime fluctuations left in the read-out of the interferometer.

The secret of this proposal to detect spacetime foam lies in the existence
of another length scale [12] available in this particular technique, in addition
to the minuscule Planck length. It is the scale provided by the frequency f of
the interferometer bandwidth. What is important is whether the length scale
l
2/3
P (c/f)1/3, characteristic of the noise from spacetime foam at that frequency,
is comparable to the sensitivity level of the interferometer. The hope is that,
within a certain range of frequencies, the experimental limits will soon be
comparable to the theoretical predictions for the noise from quantum foam.

The detection of spacetime foam with interferometry techniques is also
helped by the fact that the correlation length of the noise from spacetime
fluctuations is extremely short, as the characteristic scale is the Planck length.
Thus, this faint noise can be easily distinguished from the other sources of
noise because of this lack of correlation. In this regard, it will be very useful
for the detection of spacetime foam to have two nearby interferometers.

To proceed with the analysis, we recall that the displacement noise due to
spacetime foam that involves a time interval t is given by δl(t) ∼ l2/3

P (ct)1/3.
Next we decompose the displacement noise in terms of the associated displace-
ment amplitude spectral density [26] S(f) of frequency f . For a frequency-
band limited from below by the time of observation t, δl(t) and S(f) are
related by

(δl(t))2 =
∫

1/t

[S(f)]2df . (31)

For the displacement noise due to quantum foam, one can easily check that the
amplitude spectral density is given by S(f) ∼ c1/3l

2/3
P f−5/6, inversely propor-

tional to (the 5/6th power of) frequency. So one can optimize the performance
of an interferometer at low frequencies. As lower frequency detection is possi-
ble only in space, interferometers like the proposed Laser Interferometer Space
Antenna [27] may enjoy a certain advantage.

To be specific, let us now compare the predicted spectral density from
quantum foam noise with the noise level projected for the Laser Interferom-
eter Gravitational-Wave Observatory. The “advanced phase” of LIGO [28] is
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expected to achieve a displacement noise level of less than 10−20 mHz−1/2 near
100 Hz; one can show that this would translate into a probe of lP down to
10−31 cm, a mere hundred times the physical Planck length. But can we then
conclude that LIGO will be within striking distance of detecting quantum
foam? Alas, the above optimistic estimate is based on the assumption that
spacetime foam affects the paths of all the photons in the laser beam coher-
ently. But, in reality, this can hardly be the case. Since the total effect on the
interferometer is based on averaging over all photons in the wave front, the
incoherent contributions from the different photons are expected to cut down
the sensitivity of the interferometer by some fractional power of the number
of photons in the beam – and there are many photons in the beams used
by LIGO. Thus, even with the incredible sensitivity of modern gravitational-
wave interferometers like LIGO, the fluctuations of spacetime are too small
to be detected – unless one knows how to build a small beam interferometer
of slightly improved power and phase sensitivity than what is projected for
the advanced phase of LIGO!4

For completeness, we should mention that the use of atom interferome-
ters [9, 29] and optical interferometers [30] to look for effects of spacetime
fluctuations has also been suggested. A recent proposal to build a matter-
wave interferometric gravitational-wave observatory [31], using atomic beams
emanating from supersonic atomic sources, sounds promising, not only for
detecting gravitational radiation, but perhaps also for detecting spacetime
foam.

Further Remarks

[A Suggestion to Use Atom Interferometry Techniques. Here we propose [9] to
use laser-based atom interferometry experiments [29] in the not-too-distant
future to detect spacetime fluctuations on the scales of quantum gravity at
the level given by (3) and (4). In a laser-based atom interferometer, an atomic
beam is split by laser beams into two coherent wave packets which are kept
apart before being recombined by laser beams. The phase change of each wave
packet is proportional to the proper time along its path, and so the resulting
interference pattern depends on the time difference between the two paths. In
the absence of spacetime fluctuations, the phase change η over a time interval
τ is given by η(τ) = Ωτ , where Ω ≡ mc2/� is the quantum angular frequency
associated with the mass m of the atom. Due to spacetime fluctuations (4),
there is an additonal fluctuating phase δη given by

δη ∼ (τt2P )1/3

τ
η = (τt2P )1/3Ω . (32)

For example, in 1992, Chu and Kasevich at Stanford University built an atom
interferometer which used sodium atoms (m ∼ 4.5 × 10−26 kg), and the two
4 This conclusion is based on the author’s discussion with G. Amelino-Camelia and

R. Weiss.
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wave packets were kept apart for 0.2 sec. Reference [32] for that experiment,
one finds that η(τ) ∼ 7 × 1024 radians and δη ∼ 3 × 10−4 radians. Thus one
needs a precision of about 1 part in 1029 to look for spacetime foam (through
suppression of the interference pattern), compared with the precision of 1
part in 1026 that was then achieved. In other words, it appears that one
needs a (mere) thousandfold improvement in noise sensitivity to detect space-
time fluctuations. Though the above argument, a variant of the one given by
Percival [29], is necessarily short and perhaps too simplistic and overtly opti-
mistic, hopefully the conclusion is not too far off the mark.]

5.4 Ultra-High Energy Cosmic Ray Events

The universe appears to be more transparent to the ultra-high energy cosmic
rays (UHECRs) [33] than expected.5 Theoretically one expects the UHECRs
to interact with the Cosmic Microwave Background Radiation and produce pi-
ons. These interactions above the threshold energy should make observations
of UHECRs with E > 5.1019 eV (the GZK limit) [34] unlikely. Still UHECRs
above the GZK limit have been observed. In this subsection, we attempt to
explain the UHECR paradox by arguing [22] that energy-momentum uncer-
tainties due to quantum gravity (significant only for high energy particles like
the UHECRs), too small to be detected in low-energy regime, can affect parti-
cle kinematics so as to raise or even eliminate the energy thresholds, thereby
explaining the threshold anomaly.6 (For similar or related approaches, see
[35].)

Relevant to the discussion of the UHECR events is the scattering process
in which an energetic particle of energy E1 and momentum p1 collides head-
on with a soft photon of energy ω in the production of two energetic particles
with energy E2, E3 and momentum p2, p3. After taking into account energy-
momentum uncertainties, energy-momentum conservation demands

E1 + δE1 + ω = E2 + δE2 + E3 + δE3 , (33)

and
p1 + δp1 − ω = p2 + δp2 + p3 + δp3 , (34)

where δEi and δpi (i = 1, 2, 3) are given by (22) and (21),

δEi = γiEi

(
Ei

EP

)2/3

, δpi = βipi

(
pi

mP c

)2/3

, (35)

5 For the case of (the not-so-well-established) TeV-γ events, see [1] and references
therein.

6 Unfortunately, we have nothing useful to say about the origins of these energetic
particles per se.
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and we have omitted δω, the contribution from the uncertainty of ω, because
ω is small.7

Combining (35) with the modified dispersion relations8 (24) for the incom-
ing energetic particle (i = 1) and the two outgoing particles (i = 2, 3), and
putting c = 1,

E2
i − p2i − εip2i

(
pi

EP

)2/3

= m2
i , (36)

we obtain the threshold energy equation

Eth = p0 + η̃
1
4ω
E

8/3
th

E
2/3
P

, (37)

where

p0 ≡ (m2 +m3)2 −m2
1

4ω
(38)

is the (ordinary) threshold energy if there were no energy-momentum uncer-
tainties, and

η̃ ≡ η1 − η2m
5/3
2 + η3m

5/3
3

(m2 +m3)5/3
, (39)

with
ηi ≡ 2βi − 2γi − εi . (40)

Note that, in (37), the quantum gravity correction term is enhanced by the
fact that ω is so small [37] (compared to p0).

Given that all the βi’s, the γi’s and the εi’s are of order 1 and can be ±, η̃
can be ± (taking on some unknown Gaussian distribution about zero), but it
cannot be much bigger than 1 in magnitude. For positive η̃, Eth is greater than
p0. The threshold energy increases with η̃ to 3

2p0 at η̃ = η̃max, beyond which
there is no (real) physical solution to (37) (i.e., Eth becomes complex) and
we interpret this as evading the threshold cut. Reference [22] the cutoff η̃max

is actually very small: η̃max ∼ 10−17. Thus, energy-momentum uncertainties
due to quantum gravity, too small to be detected in low-energy regime, can
(in principle) affect particle kinematics so as to raise or even eliminate energy
thresholds. Can this be the solution to the UHECR threshold anomaly puzzle?
On the other hand, for negative η̃, the threshold energy is less than p0, i.e.,
a negative η̃ lowers the threshold energy. Reference [2, 38, 39] for example,
η̃ ∼ −1 gives Eth ∼ 1015eV. Can this be the explanation of the opening up
of the “precocious” threshold in the “knee” region? See Fig. 4. Curiously, the
interpolation between the “knee” region and the GKZ limit may even explain
the “ankle” region [1].
7 We should mention that we have not found the proper transformations of the

energy-momentum uncertainties between different reference frames. Therefore we
apply the results only in the frame in which we do the observations.

8 The suggestion that the dispersion relation may be modified by quantum gravity
first appeared in [36].
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E

N

b ca

Fig. 4. Schematic plot of the number N of UHECRs versus energy E. Reference [39]
the solid curve refers to the case of ordinary threshold energy Eth = p0. The dashed-
dotted curve refers to the case of the threshold energy given by (37). The “knee”
region is indicated by “a”, the “ankle” region by “b”, and the GZK limit by “c”

It is far too early to call this a success. In fact there are some problems con-
fronting this particular proposal to solve the astrophysical puzzle. The most
serious problem9 is the question of matter (in) stability [40] because quantum
fluctuations in dispersion relations (36) can lower as well as raise the reaction
thresholds. This problem may force us to entertain one or a combination of
the following possibilities: (i) The fluctuations of the energy-momentum of a
particle are not completely uncorrelated (e.g, the fluctuating coefficients β,
γ, and ε in (21), (22), and (24) may be related such that ηi ≈ 0 in (40));
(ii) The time scale at which quantum fluctuations of energy-momentum occur
is relatively short10 (compared to the relevant interaction or decay times);
(iii) Both “systematic” and “non-systematic” effects of quantum gravity are
present, [2] but the “systematic” effects are large enough to overwhelm the
“non-systematic” effects.

On the other hand, if (and that is a big “if”) the problems, such as the mat-
ter instability problem discussed above, can somehow be solved, the proposal
suggested by energy-momentum uncertainties will become a rather attractive
and simple explanation of the “knee” and “ankle” regions and the threshold
anomaly (if indeed there is one) found in the UHECR events.

9 But this is by no means the only problem; see [2].
10 Unfortunately, these two scenarios also preclude the possibility that energy-

momentum uncertainties are the origin of the threshold anomaly discussed above.
On the plus side, the threshold anomaly suggested by the present AGASA data
may turn out to be false. Data from the Auger Project are expected to settle the
issue.
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6 Summary and Conclusions

We summarize by collecting some of the salient points:

– On large scales spacetime appears smooth, but on a sufficiently small scale
it is bubbly and foamy (just as the ocean appears smooth at high altitudes
but shows its roughness at close distances from its surface).

– Spacetime is foamy because it undergoes quantum fluctuations which give
rise to uncertainties in spacetime measurements; spacetime fluctuations
scale as the cube root of distances or time durations.

– Quantum foam physics is closely related to black hole physics and com-
putation. The “strange” holographic principle, which limits how densely
information can be packed in space, is a manifestation of quantum foam.

– Because the Planck length/time is so small, the uncertainties in spacetime
measurements, though much greater than the Planck scale, are still very
small.

– It may be difficult to detect the tiny effects of quantum foam, but it is by
no means impossible.

Recall that, by analyzing a simple gedanken experiment for spacetime
measurements, we arrive at the conclusion that spacetime fluctuations scale
as the cube root of distances or time durations. This cube root dependence is
strange, but has been shown to be consistent with the holographic principle
and with semi-classical black hole physics in general. We think this result for
spacetime fluctuations is as beautiful as it is strange. Hopefully it is also true!

But what is really needed is direct detection of quantum foam. Its detection
will give us a glimpse of the fabric of spacetime and will help guide physicists to
the correct theory of quantum gravity. The importance of direct experimental
evidence cannot be over-emphasized.

We hope that the arguments given in these lectures are sufficiently com-
pelling to encourage a determined experimental quest to detect spacetime
foam, the ultimate structure of spacetime, for, as Michael Faraday, the dis-
coverer of electromagnetic induction, once observed:

Nothing is too wonderful to be true, if it be consistent with the laws
of nature, and in such things as these, experiment is the best test of
such consistency.
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1 Introduction

Gamma ray bursts (GRBs) are short and intense pulses of γ-rays arriving
from random directions in the sky. Several years ago Amelino-Camelia et al.
[1] (see also [2]) pointed out that a comparison of time of arrival of photons at
different energies from a GRB could be used to measure (or obtain a limit on)
possible deviations from a constant speed of light at high photons energies. I
review here our current understanding of GRBs and reconsider the possibility
of performing these observations (see also Norris, Bonnell, Marani, & Scargle
[3] for a review of the same topic). I begin (in Sect. 2) with a brief discussion
of the motivation to consider an energy dependent variable speed of light.
I turn (in Sect. 3) to a general discussion of the detectability of deviations
from a constant speed of light via time-lag measurments. I derive constraints
on the Energy range, the distance to the sources and the needed temporal
resolution of the sources and the detectors. I then turn (in Sect. 4) to a short
description of our current understanding of GRBs. This section is included
as a background material as for the rest of the discussion GRBs are just
cosmological sources of high energy photons and we don’t really care how
are these photons they produced. In Sect. 5 I return to the subject of the
talk and I describe the temporal structure and spectral properties of GRBs.
These are the key issues that are relevant for the observations of a variable
speed of light. I conclude (in Sect. 6) by confronting the observations needed
for determination of (or obtaining a limit on) a variable speed of light with
the properties of GRBs. I discuss some recent attempts to obtain limits on
Quantum Gravity effects [4, 5, 6, 7] and prospects for future improvements.

2 An Energy Dependent Speed of Light

An energy dependent speed of light arises in a variety of Quantum Gravity
models, ranging from critical or noncritical string theories, via noncommutative
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geometry, to canonical quantum gravity. These models, which involve a break-
down or a modification of Lorentz invariance at high energies, have been dis-
cussed extensively in other lectures in this school and are reviewed elsewhere
in this volume. I focus here on a simple linear velocity-energy relation (see
(1) below) that arises in models for the breakup of Lorentz symmetry pro-
posed by Amelino-Camelia et al., [1]. It appears that a similar analysis is also
applicable to the case of “DSR deformation” of Lorentz symmetry, since the
same time-of-flight studies are considered in that framework [9, 10, 11, 12]. In
fact I would expect that this simple linear velocity-energy relation (1) would
be valid, to a leading order, in many other models.

On the phenomenological side an energy dependent speed of light was
suggested as a possible resolution of the GZK paradox [13, 14]: The obser-
vations of UHECRs (Ultra High Energy Cosmic Rays) above the expected
(GZK) threshold for interaction of such cosmic rays with the Cosmic mi-
crowave background [15, 16, 17, 18, 19, 20]. Such energy dependence could
be related to a threshold violation at very high energies. Another possible
indication for this phenomenon is the observation of TeV photons from dis-
tant sources [21, 22, 23]. Such photons are expected to be annihilated due
to the interaction with the IR background. Again threshold anomalies (that
would be associated with an energy dependent speed of light) could resolve
this problem [20, 24, 25, 26]. In fact Amelino-Camelia and Piran [20] have
pointed out that a simple Lorentz invariance deformation with parameters of
the order expected in various quantum gravity theories (namely η ∼ 1 in the
notations used below) could resolve both paradoxes.

3 On the Detection
of Energy Dependent Time Lags Due
to an Energy Dependent Speed of Light

In this short review I will not discuss the theoretical or the phenomenological
motivations for an energy dependent speed of light. Instead I focus on the
detectability of this phenomenon. I stress that the deviations that I discuss
here are drastically different from those that arise from appearance of a photon
mass. The effects of a photon mass are most pronounced at low energies.
However, the deviations considered here depend on E/Mpl and are relevant
only at very high energies.

Amelino-Camelia et al. [1] (see also [8] and other talks in this volume)
pointed out that even a small variations in the speed of photons with differ-
ent energies could lead to observable energy dependent time of arrival lags
for photons arriving from a cosmological source. Following Amelino-Camelia
et al. [1], I consider a linear energy dependence of the form:

v = c
(

1 − E

ηMpl

)

, (1)
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where Mpl is the Planck mass and η is a dimensionless constant. Quantum
gravity effects that cause the deviation in the speed of light are expected to
take place around the Planck energy, Mpl. I characterize the exact energy in
which these take effect as EQG ≡ ηMpl. The sign of η determines the direction
of these changes.

One can easily generalize the discussion and consider a more general
velocity-energy dependance, such as: v = c[1 − (E/ηMpl)α] [20, 17]. How-
ever, for α > 2 and for the relevant energy range and for η ≈ 1 the resulting
time delays will be so short that I don’t discuss this case here.

This velocity law (1) leads to a time lag between a photon at energy E
and a very low energy photon of:

δt(E) ≈ 10 msec η−1dGpcEGeV , (2)

where dGpc is the distance to the source in units of Gpc and EGeV is the
photon’s energy in GeV. Ellis et al., [6] provide an exact expression as a
function of the redshift of the source. However, the approximate expression
given above is sufficient for the purpose of this work. The dotted lines in Fig. 1
depict the relation between d and E for different values of ηδt. A detection,
for a given value of ηδt, is possible only above the corresponding line. The
value of δt is the minimal time delay that can be detected in the particular
source.

It is clear from (2) that we need a very high energy source. However for
these sources, because of the enormous energy that each of the photons carries
the rate of arrival of high energy photons, R(E), is very often too small. I call
these sources which are limited by a too small rate of arrival of photons:
photon starved sources. This has to be taken into account as the low photon
rate limits the shortest possible detectable temporal variation as:

1
R(E)

=
4πd2E
AL(E)

= 180 msec
d2GpcEGeV

A4L50(E)
≤ δtmin , (3)

where L(E) is the luminosity at energy E and where I have ignored for simplic-
ity cosmological correction factors. L50(E) is the luminosity at the relevant
energy interval in units of 1050 ergs/sec and A4 is the area in units of m2.
Again δtmin is the minimal time scale that can be detected in the particular
source.

The exact limit that the combination of (3) and (2) imply depends on the
spectral shape, on the overall luminosity and on the variability time scale at
the source. Quite generally these conditions lead to an upper limit on the
distance from which the effect could be measured and to a lower limit on
the energy. As I show in Sect. 6 this limit is important for GRBs. As an
example the solid lines in Fig. 1 correspond to equal values of ALδtmin, for
the case when the luminosity per decade is constant (i.e. the spectral index
is −2) and for the case that the inequality (3) is satisfied as an equality.
The dashed line on this figure depicts the same graph for L(E) ∝ E−1/2
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Fig. 1. Lines of a constant values of δtmsL50A4 (solid lines) for δtmsL50A4 =
0.01, 0.1, 1, 10, 100, 1000. δtms is in units of msec. The canonical value δtmsL50A4 = 1
is marked by a thicker line. Detection is possible only below a given solid line.
The single dashed line corresponds to L(E) ∝ E−1/2 and is normalized so that
δtmsL50(1 GeV)A4 = 1. The dotted lines mark lines of constant values of δmsη =
0.01, 0.1, 1, 10, where again δtms is in units of msec. The canonical value of δmsη = 1
is marked by a thicker line. Detection is possible only above a given dotted line. The
combination of both constraints yields an allowed wedge with a maximal distance
and minimal energy. Note that the vertical scale of distances ranges from cosmo-
logical distances at the top (dGpc > 1) to local (galactic) distances at the bottom
(dGpc < 10−5)

which is normalized so that the luminosity per decade of energy at 1 GeV
is 1050 ergs/sec. A detection is possible only below these lines. For a given
combination of ηδt and LAδt a detection is possible only within a wedge
outlined by the corresponding solid line and dotted line. Namely, for a given
set of parameters there is a maximal distance and a minimal energy for
which the time-lag can be detected. This suggests that in some cases (but
not in the general case) a local (galactic) source with a strong very high
energy signal might be advantageous over a weak source at a cosmological
source. Indeed this was used by Kaaret [27] to obtain a meaningful limit on
η > 1.310−4 using the emission from the Crab pulsar which is only at 2.2 kpc

It is clear from (2) that a cosmological distance and a high energy are
needed for a significant δt. However, the interaction of high energy photons
with the cosmic IR background limits the distance that high energy photons
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can travel. For E ∼ 100 GeV the optical depth to z = 0.5 is unity [28]1. Thus,
we must consider photons with E < 100 GeV. This, in turn gives an upper
limit of ∼6/η sec to possible magnitude of the time delay between photons of
different energies. This is independent of the source of the emitted photons.
It immediately follows that to observe this phenomenon we need cosmological
sources of ∼GeV photons with a rapid and detectable variability on the time
scale of seconds or less. Amelino-Camelia et al. [1] point out that Gamma-
ray bursts are the natural candidates for this task, and indeed several groups
obtained lower limits on η using GRBs [4, 5, 6, 7].

4 Gamma-Ray Bursts

GRBs are short and intense pulses of γ-rays that are located at cosmological
distances. As such GRBs are ideal sources for the effect that we are looking
for. For the purpose of this work GRBs are just a cosmological source of
high energy photons. Their exact nature is unimportant for our ability to
use the photons to test the predictions of quantum gravity. However, it is
worthwhile, for completeness, to review briefly our current understanding of
this phenomenon. I refer the readers to several extensive reviews [29, 30, 31,
32, 33, 34, 35, 36, 37] for more details.

It is generally accepted that GRBs are described by the internal-external
shocks model [38, 39, 40, 41]. According to this model GRBs are produced
when the kinetic energy of an ultra-relativistic flow is dissipated. Internal
shocks within the relativistic flow produce the GRB. These shocks take place
at a distance of ∼1013 − 1015 cm from the center. The short observed time
scales (which violates the simple naive rule of δt < R/c) arises because of the
relativistic motion of the flow (with a Lorentz factor γ ≥ 100) towards us.
Subsequent interaction of the relativistic outgoing flow with the surrounding
matter leads to the production of an afterglow (in x-ray, optical and radio)
that lasts days, weeks, months and in some cases even years. This takes place
at distances of ∼1016 − 1018 cm from the center. The flow is slowed down due
to this interaction and eventually it becomes Newtonian.

It is worthwhile to mention what is the validity of this model. Indirect
determination of the size of the afterglow of GRB 970508 [42] and direct
measurement of the size of the afterglow of GRB 030329 [43] confirmed the
predicted relativistic motion . Additionally there is a good agreement between
the observed spectra and light curves of the afterglows and the predictions
of the relativistic shock synchrotron model. There is also good observational
evidence for the “internal-external” shocks transition. On the other hand,
little is known about the details of the “inner engine” and the details how
does the collapsing core produce the required relativistic jet.
1 Different authors make different assumptions on the IR background and find

different estimates for the optical depth. These quantitative differences are not
important for the purpose of this work.
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The discovery of long lasting x-ray, optical and radio afterglow enabled the
determination of the redshifts and the positions of some bursts. The identifica-
tion of bursts within star forming regions and the identification of Supernovae
(SNe) signatures (SNe bumps) in the afterglow of some bursts (most notably
GRB 980425 and GRB 030329) revealed that long2 bursts are associated with
type Ic Supernovae. As the rate of SNe Ic is much larger than the rate of GRBs
it is clear that not all Supernovae are associated with GRBs. Jet-breaks de-
tected in the afterglow of many bursts revealed that the bursts are beamed
into cones of a few degrees and that their total energy is rather constant
∼1051 ergs [45, 46].

The GRB-SNe association is explained according to the Collapsar model
[47], which is a model for the “inner engine”. According to this model a
black hole – accretion disk system forms during the core collapse. This system
produces a relativistic jet that manages to punch a hole in the supernova
envelope. The burst and the afterglow are produces along the internal-external
shocks model, once the relativistic jet has emerged from the envelope.

5 GRB Observations and Testing
of a Variable Speed of Light

The possibility of observing the energy dependent time-lags depend on four
factors the distances to the sources, their temporal structure, their spectrum
and their intensity. I discuss these three features here:

– Distances It is established that the bursts arise from cosmological dis-
tances. The identified redshift record is 4.5 (GRB 000131) but it is likely
that more distant bursts has been observed but their redshift is unknown
[48].

– Temporal Structure The bursts durations vary lasting from a few mil-
liseconds to a thousand seconds. The paucity of bursts with a duration
around two seconds suggest a classification of the bursts to two groups
according to their durations – long bursts with durations longer than 2
seconds and short one with a durations shorter than 2 seconds.
What is most important for our purpose is that most bursts show a highly
variable light curve (see for example Fig. 2). Nakar and Piran [49], for
example analyzed the TTE (high resolution data of the short bursts and of
the first two seconds of long ones) find in many burst sub-pulses on a time
scale of 10 ms (which was about the minimal possible temporal resolution).
with sub-pulses on a scale as short as a fraction of a millisecond [50].

– Spectrum The bursts’s spectrum usually peaks around a few hundred
keV. Recently a subgroup of bursts, x-ray flashes, that emits most of their

2 As afterglow was seen so far only from long burst it is not clear if short bursts are
also associated with Supernovae. In fact there are some theoretical considerations
that suggest that they are not related.
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Fig. 2. (Left) The beginning of BATSE trigger 3330: a long bright burst with
T90 = 62 sec. (Right) The whole light curve of BATSE trigger 551: a bright short
burst with T90 = 0.25 sec. The peaks are marked by stars and the triangles mark the
pulses’ width. The figure demonstrates similar short time scale structure in these
bursts (at a 5 msec resolution). From [49]

energy in X-ray was discovered. In many cases a high energy tail, with
photon energies from 100 MeV to 18 GeV has been observed [51]. The TeV
detector, Milagrito, discovered (at a statistical significance of 1.5e-3 or so,
namely at 3σ) a TeV signal coincident with GRB 970417 [52, 53]. However
no further TeV signals were discovered so far from other 53 bursts observed
by Milagrito [52] or from several bursts observed by the more sensitive
Milagro [54]. One should recall however, that due to the attenuation of the
IR background TeV photons could not be detected from z > 0.1. Thus even
if most GRBs emit TeV photons those photons won’t be detected on Earth.
Similarly these photons are too energetic for our purpose.

– Intensity The last factor that is important in our consideration is the in-
tensity of the signals. This is important because a significant number of
photons is needed to determine exactly the timing of a pulse. The strongest
observed bursts have a fluence of 10−4 ergs/cm2 corresponding to 1000
(100 keV photons)/cm2. The peak photon flux (on the BATSE3 64 msec
channel) is ∼180 photons/cm2/sec. With typical detectors’ area of several

3 BATSE, the Burst and Transient Source Experiment on board on NASA’s
Compton-GRO, is the largest GRB detector flown so far.
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square meters this leads to a (100 keV range) photon rate of more than a
photon per µsec that in principle could be used to determine the temporal
structure down to a very short time scales.

The situation looks at first promising. GRBs are highly variable bright
cosmological sources providing γ-ray photons at the right distances. Equation
(2) reveals that energies higher than 100 MeV are needed to produce a time
delay of a few millisecond and many GRBs have such photons. At the same
time many GRBs show variability on such a time scale. However, as we see in
the next section one should proceed with cation before concluding that GRB
signals could provide a real measure of a variable speed of light.

6 Caveat, Past Observations and Future Prospects

A careful look at the properties of GRBs uncovers, however, problems. The
main problem is that it is not clear that the high and low energy photons
seen from GRBs are emitted simultaneously. In fact the current understand-
ing is just the opposite. The highest energy (18 GeV) photons discovered by
EGREAT (a detector on Compton – GRO), were observed more than an hour
after the main burst [55, 56]. Similarly, when Gonzalez et al. [57] combined the
BATSE (30 keV–2 Mev) data with the EGRET data they discovered in GRB
941017 a high energy tail that extended up to 200 MeV. This high energy com-
ponent appeared 10–20 sec after the beginning of the burst and displayed a
roughly constant flux up to 200 sec, while the main lower energy burst decayed
after several dozen seconds.

One may hope that this non-simulteneity appears only in a “global” sense
and that on a short time scale high energy photons are emitted simultaneously
with the low energy ones. While there is not enough information on the generic
time lag between very high (100 MeV and higher) and low energy (100 keV)
GRB photons there is a lot of “alarming” information on lack of simultaneity
within the BATSE band (25 keV to 2 MeV). Already in 1992 Fishman et al.,
[58] (see also Link et al., [59]) noticed that the duration of GRB pulses depend
on their energy and that at lower energy the pulses are wider. Band [60]
classifies this as a hard to soft evolution. Later Norris et al., [61] noticed that
this evolution corresponds to a time lag between pulses at different energies.
Typically the higher energy pulses peak before the corresponding low energy
ones. For a sample of 174 bright bursts Norris et al., [61] find typical lags
between channel 1 (25–50 keV) to channel 4 (300 keV–2 Mev) of the order of
0.1–0.2 sec with a maximal lag of 5 sec. A small fraction (∼5%) of the bursts
have negative lags of the order of less than 0.1 sec. These lags are larger by a
factor of 2–3 than the lags suggested in (2) for a GeV photon!

For the bursts with a known redshift Norris et al. [61] find interesting anti-
correlation between the time lags and the peak luminosities of the bursts. This
correlation, for which there is no clear theoretical explanation, has been used
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by Norris et al. [61] to estimate the luminosity of other bursts. It is in a
general agreement with other luminosity indicators such as the variability of
the bursts [62]. While this correlation is not of interest for the purpose of this
work the existence of intrinsic time lag between photons of different energies
may jeopardize the whole prospect of detection of energy dependent time of
arrival lags arising from an energy dependent travel time. It is clear that
such an observation requires a simultaneous emission of photons at different
energies.

Ellis et al. [6] suggest to use the redshift dependence of the velocity induced
time lags to distinguish them from the intrinsic lags that are produced at the
source. By plotting the time lags for several BATSE bursts with a known
redshifts they obtain a limit EQG > 6.9 · 1015 GeV or in our notations η >
6.9·10−4. As the highest energy photons used are of ∼1 MeV, this corresponds,
according to (2) above to the conclusion that the redshift dependent time lags
are less than ∼0.1 sec, which is comparable with the intrinsic time lags of these
bursts [61]. Given the time resolution this limit (η > 10−3 seem to be (see in
(2)) the best that can be done using “low” energy (∼MeV) photons.

However, there is another observational factor that appears here. Norris
et al. [65] describe the tendency for wide pulses to be more asymmetric, to
peak later at lower energy and to be spectrally softer, while narrow bursts are
harder, more symmetric, and nearly simultaneous. This implies that the nar-
rowest peaks, those that are most interesting for this experiment have a chance
of being simultaneous in both low and high energies. Schafer [4] uses, along
these lines, the observations of one of BATSE’s brightest bursts, GRB 930131
with 30 keV and 80 MeV photons to obtain a limit of EQG > 8.3 ·1016 GeV (or
η > 8.3·10−3). Also along this line Boggs et al., [7] analyze GRB 021206. They
used the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI)
with an energy range of (3 keV to 17 MeV). They noticed that while the
lower energy (<2 MeV) light curve of the burst is rather irregular at higher
energies the light curve exhibits a single sharp pulse of photons extending
to energies above 10 MeV with a duration of 15 msec. This enables Boggs
et al., [7] to set a limit of δt/E = 0.0 ± 0.34 sec GeV−1 from which they ob-
tain EQG > 1.8 · 1017 GeV (η > 0.018). Considering (2) this seems to be the
best that can be done with 10 MeV photons. To improve we have to get to
lower temporal resolution (which might not be possible) or to higher photon
energies.

But here arises a second simple but important problem. In spite of the fact
that GRBs are the most luminous objects in the universe at GeV energies they
are photon starved: the observed flux is simply low. The maximal GRB fluxes
at energies of a few hundred keV are of ∼100 photons100 keV/cm2/sec. With
a several square meter detector this corresponds to a flux of 106 100 keV
photons/sec or to a photon rate of one per µsec. However even if GRBs emit
the same energy flux at the GeV range this flux corresponds to a meager
10−3/cm2/sec GeV-photons or to 10 GeV-photons per second with a square
meter class detector. As the minimal temporal resolution is larger than the
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reciprocal of the rate of observed photons it will be impossible to obtain a
temporal resolution of better than ∼100 msec at the GeV range. From (2) this
corresponds to a limit on η of order unity if all other problems are resolved.

The comparison of (2) and (3) (shown in Fig. 1 for a constant energy
per logarithmic interval) yields that to resolve the time lags we need a nearby
(d < 1 Gpc) very luminous GRB with a significant GeV component. Truly the
rather “small” distance will reduce δt. However, only in this way there will be
enough photons to obtain a sufficient temporal resolution. The requirement
of short distances implies that we won’t be able to use the redshift effect
to distinguish between intrinsic lags and time of flight lags. However, the
fact that we consider only very luminous bursts may resolve this problem as
the luminosity-lag correlation indicates that intrinsic lags are smaller for more
luminous bursts and they may disappear for the very bright ones. These simple
considerations are indeed supported by the present observations. Boggs et al.,
[7] considered a single very bright burst: GRB 0211206 which was one of the
most powerful bursts ever [63] and was most likely at z ≈ 0.3, and obtained
η > 0.018. This should be compared with η > 0.00069 obtained by Ellis et al.
[6] who considered a family of weaker bursts at cosmological distances z ≥ 1.
One has to recall however, that such a burst occurs once per decade and it is
not clear when will the next one take place. Hopefully a suitable GRB detector
will be in orbit at that time.

The best prospect to estimate the variable velocity energy dependent effect
will be with a single observatory that could observe both the low energy γ-
rays as well as the GeV emission. Luckily there are two planed mission that
can perform this job.

The Italian Agile (Astro-rivelatore Gamma a Immagini LEggero) detector
[64] is scheduled to be launched in 2005. It is a GRB detector at the energy
range of 30 MeV–50 GeV and a low energy detector at 10–40 keV. Thus it is
expected to detect GRBs at both very high and very low energy. The temporal
resolution is about 1msec. The expected detection rate is about 10 GRBs per
year at energies above 100 MeV. The basic limitation of Agile is its relatively
small area (∼0.16m2).

An ideal observatory will be NASA’s GLAST (Gamma Ray Large Area
Space Telescope). GLAST is scheduled for launch in 2007 (Norris et al., [3]).
GLAST will include the Large Area Telescope, LAT, which will have an ef-
fective area of 8m2 and will be sensitive to photons in the 20 MeV–300 GeV
range and GRM, a Gamma-Ray burst Monitor which will be sensitive to pho-
tons in the 10 keV to 25 MeV range. Both the LAT and the GBM provide the
arrival time of each photon with a resolution requirements of <10 µsec (with a
goal of <10 µsec) and will give energies for each detected photon. One cannot
ask for more, in terms of the experimental design needed to study the energy
dependent time lag. Thus, if the intrinsic time lags will be resolved or shown
to be unimportant in some sub class of pulses or bursts, and this is a very big
IF in my mind, we might be able to obtain a limit of η around unity towards
the end of this decade.
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1 Introduction

Of the different approaches to quantum gravity, the best developed, from the
point of view of addressing the key theoretical questions a quantum theory of
gravity must answer, is loop quantum gravity1. While string theory appears
to better address the issue of unification, at least so far, it fails to provide
a background independent approach to the quantum mechanics of spacetime
geometry-a necessary condition for any quantum theory of gravity. Moreover,
many key conjectures remain unproven, including perturbative finiteness and
consistency, which have not been demonstrated for any string theory past sec-
ond order in perturbation theory2. By contrast, loop quantum gravity appears
to provide a consistent and finite background independent approach to quan-
tum gravity. There is recent progress on several issues, including accounting for
the black hole entropy [8], and giving a precise quantum mechanical descrip-
tion of the earliest phases of the evolution of the universe [9, 10]. Furthermore,
it gives unique predictions of novel quantum gravitational phenomena, such
as the discreteness of area, volume and other observables.

However, in this new era of quantum gravity phenomenology, a quantum
theory of gravity must pass a stricter test to be taken as a serious candidate:
it must make unambiguous predictions for the upcoming experiments which
probe the Planck scale.

One way such predictions may arise is by modifications of the energy-
momentum relations of low energy physics, of the form,

E2 = p2 + m2 + alP E3 + bl2P E4 + . . . (1)

Related to this may be corrections to other of the basic kinematical formula
of special relativity including energy-momentum conservation laws and the
1 For some reviews, see [1, 3, 4, 6, 7]
2 For a summary of the status of the main conjectures of string theory, see [6].
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actions of Lorentz transformations on energy-momentum eigenstates. As de-
scribed in other papers in this volume, such corrections are in fact amenable
to experimental test [11, 12, 13, 14] in present and near future experiments.

In this contribution I would like to do three things. First I will describe
the present state of the results relevant for predictions of quantum gravity
phenomenology from loop quantum gravity. Second I will give an introduction
to some aspects of loop quantum gravity, in particular those having to do with
the theory in the presence of a non-zero cosmological constant, Λ3 Third,
I will describe one approach to deriving Planck scale corrections to energy
momentum relations from matter fields, of the form of (1). This approach is
based on studying the theory for nonzero Λ, and then deriving predictions
for zero or very small Λ, corresponding to our universe by taking the limit
Λ → 0. For reasons I will explain shortly, it may be very helpful to approach
the problem of making predictions for the phenomenology with Λ = 0 through
a limit of this kind.

2 What Should Theory Predict for Phenomenology

There is a key question that any quantum theory of gravity must answer
if it is to provide predictions for low energy phenomenology: What is the
fate of Poincaré and Lorentz invariance when Planck scale corrections to the
semiclassical limit are taken into account?

This question arises because Poincaré and global Lorentz invariance can-
not be symmetries of any quantum theory of gravity. This is because they are
not symmetries of general relativity, and any correct quantum theory of grav-
ity must have general relativity as the low energy limit. Poincaré and global
Lorentz invariance are only symmetries of one particular solution to general
relativity: Minkowski spacetime. It happens that Minkowski spacetime is, un-
der certain choices of asymptotic conditions and with Λ = 0 the ground state
of the classical theory. As such it has the maximal number of symmetries of
any spacetime.

But general relativity is a dynamical theory of spacetime, which is back-
ground independent, in the sense that no single spacetime-not even Minkowski
spacetime-appears in the formulation of the action, equations of motion and
Hamiltonian. A particular solution may have symmetries, but those are not
symmetries of the dynamics of the theory. From the point of view of the full
theory, the symmetries of any classical solution-even the ground state-play no
fundamental role.

So in classical general relativity, Poincaré and global Lorentz invariance
are only accidental, emergent symmetries that characterize the low energy
limit. Such must be true for any quantum theory of gravity that has general
relativity as a classical limit.
3 These parts of the paper are cannibalized from a previous review [5].
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Because of this, it is possible, in fact necessary to ask, what symmetries
characterize the low energy limit of the correct quantum theory of gravity?

There appear to be three possibilities:

1. Lorentz and Poincaré invariance emerge exactly as in the classical theory.
In this case there are no corrections of order lpE to relativistic kinematics,
a and b in (1) vanish.

2. Lorentz and perhaps Poincaré invariance are broken, so the symmetry is
reduced at order lP E to a smaller algebra. There will then be nonzero
corrections and a and b should be computable. Further, there will be a
preferred frame of reference, which arises somehow dynamically in the low
energy limit.

3. The symmetry is deformed, or non-linearly realized, as in κ-Poincaré sym-
metry [15] or proposals for doubly special relativity, DSR [16, 17, 18, 19].
There is no preferred frame, so that the number of symmetry generators
remains 10. However, the algebra of the Poincaré generators may be quan-
tum deformed as in the κ-Poincaré algebra [15]. One symptom of this is
that the geometry of Minkowski spacetime can become non-commutative.
By the relativity principle, the Lorentz subgroup of Poincaré cannot be
deformed, for the group axioms must be satisfied if observers in relative
motion are able to transform measurements made among themselves. But
its action on energy-momentum eigenstates can become non-linear.
This scenario leads to non-zero a and b in (1). There are also other correc-
tions to kinematics, for example there must be corrections to the energy
and momentum conservation laws so that the modified energy-momentum
relations may be true, consistently with the conservation laws, in every
inertial frame.

Any background independent theory of quantum gravity must tell us which
of the these three scenarios it predicts. Furthermore it must make unique and
calculable predictions for a and b for the different particles, as well as for other
possible corrections, such as to energy-momentum laws.

Furthermore, it must be emphasized that only a background independent
theory could make such a prediction. A background dependent theory, like
string theory, cannot in principle, because its definition requires the prior
specification of a fixed classical spacetime background. The symmetry of the
low energy limit is then put in by hand as the symmetry of the background,
it cannot be predicted. Thus, we should beware of “me too” claims for string
theory and other background dependent approaches, that assert that they can
produce a theory based on a background where any of the three scenarios is
realized. This is true, but it is a sign that those theories are not predictive,
because the background must be chosen by hand from a (very long) list of pos-
sible backgrounds on offer, rather than predicted as the result of a dynamical
calculation from the theory.

An example of how such a prediction arises uniquely from a genuine quan-
tum theory of gravity is given by the case of quantum gravity in 2 + 1
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dimensions, coupled to point particles. It has long been known that 2 + 1
gravity exists, and is an exactly solvable theory [21]. This remains true when
coupled to any number of point particles. Thus, the argument I’ve just made
says it must make a unique prediction for which scenario obtains, and for the
coefficients a and b.

Does it?
It does [22]. As soon as the question was asked it was realized that the

result is already in the literature, indeed the answer was given in a number
of different results in separate papers [23]. The answer is that 2 + 1 quantum
gravity with point particles realizes exactly the third scenario. Moreover, it
predicts that when Λ = 0 the low energy symmetry is given by the κ-Poincaré
algebra. Furthermore, as that algebra is non-linear, the theory must tell us
what presentation of the symmetry algebra corresponds to the algebra of the
asymptotic energy and momentum operators measured by an observer at the
boundary of the spacetime. It does that as well, and by doing so it gives unique
predictions for all Planck scale corrections including a and b.

For reasons I will explain, I believe that it is reasonable to conjecture that
the same will be true in LQG in 3 + 1 dimensions. The specific conjecture is

The symmetry of the ground state of loop quantum gravity when Λ = 0 is
the κ-Poincaré algebra with the invariant energy given by MP = κ−1.

There is a simple argument for this conjecture [24], whose applicability to
loop quantum gravity in 3 + 1 dimensions will be supported by a result I will
describe below.

We first note that it is unlikely that a preferred frame emerges from the
low energy limit of loop quantum gravity. This is because the gauge invari-
ances of the theory include the transformations generated by the Hamiltonian
constraint. On classical solutions, these generate diffeomorphism correspond-
ing to arbitrary changes in the time coordinate. Hence different slicings of a
classical spacetime into a one parameter family of spacelike hypersurfaces are
gauge equivalent.

A preferred frame could then only arise by a spontaneous breaking of
this gauge invariance. This would require that some vector field va acquire a
vacuum expectation value. This might occur in a theory coupled to a vector
field (that was not a gauge field), but in the absence of such a coupling and a
Higgs like dynamics for the vector field, there is no apparent mechanism for
spontaneous breaking of local lorentz symmetry to arise.

This would appear to rule out the second possibility, except in special
theories where the right kinds of vector fields and interactions were included.
A rough argument to prefer the third over the first in the general case, goes
as follows.

We recall the classic result that the de Sitter (or anti-de Sitter) algebra
SO(3, 2) has a contraction to the Poincaré algebra, The generators of SO(3, 2)
are denoted by MAB , where A = a, 5 and a = 0, . . . 3 are the 3 + 1 Lorentz
indices. If R = Λ−1/2 is the radius of the universe, then the generators of
translations in Minkowski spacetime come from
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Pa =
√

ΛM5a (2)

The Poincaré algebra emerges in the limit Λ → 0.
However, there is evidence that for nonzero Λ, the symmetry algebra is

quantum deformed to SOq(3, 2) with, for small Λ, and with z = ln(q)

z ≈
√

Λlp for d = 2 + 1 [20, 25, 26] (3)
z ≈ Λl2p for d = 3 + 1 [27, 28, 29] (4)

In the case of 2+1 gravity, the result that the symmetry algebra is quantum
deformed when the cosmological constant is turned on is rigorous, a complete
argument is given in [26]. For the case of 3+1 there is good evidence that the
local gauge symmetry of the spacetime connection is quantum deformed from
SU(2) to SUq(2) [27, 28, 29]. In [30] an argument is given that this extends
to the quantum deformation of the algebra of observables on the boundary of
a spacetime with cosmological constant, so that the subgroup of the de Sitter
algebra that generates the symmetries of the boundary is quantum deformed.
This prompts the conjecture that the algebra of generators that preserve the
ground state of 3 + 1 quantum gravity with nonzero Λ is quantum deformed.

We now consider taking the contraction of the quantum deformed symme-
try algebra. The cosmological constant now occurs in two places, in (2) and in
either (3) or (4). As a result, the limit Λ → 0 may be no longer the Poincaré
algebra. In the case of 2 + 1 gravity it is exactly the κ-Poincaré algebra [24].
Indeed this is exactly how the κ-Poincaré algebra was found in the first place
[15].

In the case of 3 + 1 dimensions, one must take into account an additional
renormalization of the energy and momentum generators. This is necessary
because, unlike the case of 2+1 dimensions, there are local degrees of freedom,
and these will induce a renormalization between the fundamental operators of
the theory and the symmetry generators of the low energy limit. This will be
proportional to a power of the ratio of the ultraviolet and infrared regulator.
Since LQG is known to be ultraviolet finite, the former is the Planck scale.
The latter is of course the cosmological constant itself. Thus we have, instead
of (2),

Pa,ren =

(
1√
Λlp

)r √
ΛM5a (5)

It turns out that for r < 1 the contraction is the ordinary Poincaré algebra,
while for r = 1 it is again κ-Poincaré. (For r > 1 the contraction does not
exist.) This is supported by a result we will describe below.
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3 Does Loop Quantum Gravity Make Predictions
for Planck Scale Phenomenology?

To make predictions for Planck scale corrections to energy-momentum rela-
tions and other laws, a background independent quantum theory of gravity
such as loop quantum gravity should ideally have three good features. (1) It
should have a unique ground state. (2) It should be possible to derive quan-
tum field theory on Minkowski or (A) de Sitter spacetime (presumably with a
finite cutoff) as an approximation to the physics of excitations of that ground
stat. (3) There should be a technique for calculating corrections to the pre-
dictions of QFT on Minkowski spacetime as a power series in lP E, where E is
the energy carried by a particle. The results should allow us to deduce which
of the three scenarios above is correct.

There are in the literature a number of proposals for candidates for the
ground state, for both vanishing and small positive or negative Λ [31, 32, 33,
34, 35]. The first candidates, known as weave states, for Λ = 0 were proposed
shortly after loop quantum gravity was formulated. In 1989 Kodama proposed
a candidate ground state for non-zero Λ, that now goes under his name [35].
It will be discussed in some detail below.

For some of these candidate ground states step two has been carried out,
leading to the recovery of quantum field theory on Minkowski or de Sitter
spacetimeGP,AMU,chopinlee. In several cases there is also evidence for a
Planck scale cutoff. The lP E corrections have also been computed in sev-
eral of the cases, and are found to be present. That is the good news. The
bad news is that the coefficients a and b turn out to depend on adjustable
parameters in the definitions of the candidate ground states.

Before taking these results too seriously, however, it should be noted that
there are two ways in which most of these proposals of candidates ground
states fall short. The first is that they are not physical states because they
are not annihilated by the diffeomorphism and/or the Hamiltonian constraint
operators. These are the operators that generate, on the quantum states, the
local gauge and diffeomorphism transformations of the classical theory. The
states don’t satisfy them because they are not gauge invariance, hence they
cannot represent physical quantities.

As a caveat to this, it is possible, as pointed out by Ashtekar [37], that it
might be possible to construct physical states in a gauge fixed version of the
theory. This would be interesting to work out.

The second reservation one must have concerning these results is that there
is no hamiltonian which they minimize. This is a shortcoming of the theory,
that should be overcome.

It is true that the equivalence principle rules out the existence of a local
hamiltonian density in any theory of gravity that implements it. But it is still
possible to define a hamiltonian, this requires defining a boundary, and fixing
appropriate boundary conditions there. When this is done, a hamiltonian can
be defined in general relativity and, under very weak assumptions having
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mainly to do with the positivity of the energy density of matter fields, shown
to be finite.

It would be very useful if a corresponding hamiltonian operator could be
defined for the quantum theory of gravity and, proved to be positive definite.
Given such a positive definite Hamiltonian operator, the ground state could
be found simply minimizing the expectation value of a suitable ansatz for the
ground state, as in the rest of physics.

Baring this, results of the kind in the literature show that there is a possi-
bility that quantum gravity may predict corrections to the energy momentum
relations. But the results up till now are not reliable or robust enough to count
as predictions of the theory.

The only putative ground state that has been studied which is a solution
to all the constraints is the Kodama state [35]. As such it is of interest to
see if corrections to the energy-momentum relations arise when matter fields
propagate on the quantum background defined by this state. We will discuss
this in detail in the last sections of this review, and show that the answer
is yes. Moreover, we will see that the results support the argument we gave
above based on contraction from quantum de Sitter symmetry.

4 The Basic Ideas of Loop Quantum Gravity

Loop quantum gravity is likely the most conservative approach to quantum
gravity. This approach is based, to begin with, on the quantization of Ein-
stein’s theory of general relativity, using a particular formulation discovered
by Sen [38] and completed by Ashtekar [39]. Rather than postulating new de-
grees of freedom, symmetries or dimensions, loop quantum gravity takes the
basic principles of general relativity and quantum field theory seriously, and
puts the emphasis on the development of methods that do not compromise ei-
ther set of principles. These methods highlight the force that the principles of
relativity theory, primarily diffeomorphism invariance and the independence
from any fixed, non-dynamical background structure have, when treated prop-
erly in the context of quantum field theory. Indeed, it turns out that once this
is done, the theory admits a wide range of assumptions concerning the funda-
mental degrees of freedom, symmetries and supersymmetries, as well as the
exact dynamical laws. Einstein’s equations may be imposed, and to a remark-
able extent, solved, quantum mechanically, but other assumptions concerning
the fundamental dynamics may also be studied.

Loop quantum gravity has been under development since 1986, and
throughout this time there has been continual progress. The various obstacles
encountered have in most cases been overcome. As a result it has been possible
over time to make increasingly strong claims for this approach to quantum
gravity.

We will be concerned here with a subset of the results, those relevant for
the case that the cosmological constant is non-zero and positive. For a detailed
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listing of many of the key results, to date, of loop quantum gravity, see [6]. It
must be said that some theoretical physicists find the results gotten using the
methods of LQG surprising. It used to be argued that the perturbative non-
renormalizability of general relativity implies that quantum gravity requires
a modification of the principles of physics such as proposed in different ways
in other approaches such as string theory, causal sets, etc. What is perhaps
surprising is that loop quantum gravity has been successful, not by being rad-
ical, but by sticking rather strictly to the basic principles of general relativity
and quantum theory.

Thus, the first question to be addressed is how it is that the theory may
exist non-perturbatively, when the theory is nonsense when developed by tra-
ditional perturbative methods around fixed backgrounds? The answer has two
parts. First the theory is completely background independent which means that
classical spacetimes play no role in the formulation. This is necessary due to
the strongly interacting nature of the Planck scale physics, the fact that the
spacetime geometry is represented completely by operators, and the fact that
the gauge invariances of the theory include active diffeomorphisms, which are
broken by the specification of any given classical background metric4.

The mistake all background dependent approaches make is to assume that
space and spacetime have continuous, classical structures when probed at
arbitrarily short wavelengths. Even rough, heuristic arguments, such as those
that Wheeler and others used to give based on the uncertainty principle,
suggest that this is wrong. The results of loop quantum gravity, based only
on the basic principles of quantum theory and general relativity demonstrate
conclusively that there is no classical spacetime manifold at Planck scales and
shorter5.

Thus, to arrive at a good quantum theory one must use methods which
are background independent, and do not make the incorrect assumption that
spacetime is smooth at short distances. To do this means only to take the
basic principles of Einstein’s theory of general relativity seriously and apply
them exactly in the quantum theory. As opposed to other approaches, such
as string theory, where new degrees of freedom are posited to move in fixed,
classical background spacetimes, loop quantum gravity treats the geometry
of spacetime at the quantum mechanical level as Einstein did at the classical
level, as a completely dynamical entity. This is in fact required if the gauge
invariance of the theory, which is active diffeomorphisms, is to be respected
exactly in the quantum theory.
4 For background on background independence, see [41, 42, 43].
5 Indeed, the dynamics of Einstein’s equations do not come into the derivation

of the quantization of area and volume, which tell us that quantum geometry
is discrete. These results are consequences only of the canonical commutation
relations and the gauge invariances that define the theory. They apply whatever
matter the theory is coupled to, and, with appropriate modifications, described
in [44] apply also to supergravity.
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When diffeomorphism invariance is imposed exactly there is a big payoff,
which is that one finds an exact description of the gauge invariant Hilbert
space of quantum gravity. These are eigenstates of observables that represent
the volume of spacetime and the areas of surfaces in the spacetime. These
observables turn out to be finite, when regulated in a manner that respects
diffeomorphism invariance. And they have discrete spectra, which demon-
strates that quantum geometry is discrete at the Planck scale. These results
explain, in detail, why perturbative expansions around smooth backgrounds
fail; because they fail to capture any of the structure present in exact solutions
of the quantum constraints that impose gauge and diffeomorphism invariance.

The second key to the success of loop quantum gravity is a property of the
Einstein equations, which gives force to these general considerations of back-
ground independence and diffeomorphism invariance. This is the existence
of an intimate connection between the kinematics and dynamics of general
relativity and topological field theories.

A topological field theory is a field theory that has only a finite number
of degrees of freedom. The few degrees of freedom it has are non-local and
generally are measured either at boundaries of spacetime or by measuring
phase factors or holonomies associated with loops or surfaces that cannot
be shrunk to a point. Topological field theories share some properties with
general relativity, such as being invariant under the gauge group of active
diffeomorphisms, and being independent of any classical background6.

At the same time, general relativity is not a topological field theory as it
has an infinite number of local degrees of freedom.7 Even so, there are close
connections between general relativity and topological field theory at the clas-
sical level, and these are exploited by loop quantum gravity to make a sensible
quantization of general relativity. By doing so, results that at first sight are
surprising and unexpected, turn out to be not only possible, but accessible
with standard methods. This relationship with topological field theory in fact
makes possible the key results at both the hamiltonian and path integral level
that are the basis for the success of the approach.

These relationships with topological field theory are the subject of the
next few sections of this paper, as they are in a good way into the subject.
There are in fact three distinct ways that topological field theory enters into
quantum gravity, First, the action turns out to be closely related to that of a
topological field theory [4]. Second, the natural boundary term in the action,
which must be added when a spacetime region with boundary is studied, is
a topological field theory [27]. Third, the ground state of the theory with a
non-zero Λ is derived from a topological field theory [35].

6 Some basic references on topological field theory include [45]
7 There are other diffeomorphism invariant theories that are not topological, even

some without a metric, such as Chern-Simons theory for d ≥ 5 [46] and higher
form versions of Chern-Simons theory [47, 48].
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Only a few of the results to be described in the next sections are recent.
The case of positive cosmological constant has, in fact, been somewhat ne-
glected in the field in recent years. Thus it is worth mentioning some of the
reasons to return to it now. These include the fact that a positive cosmolog-
ical constant appears to be observed (not too mention the fact that it is in
any case necessary for inflationary cosmology that the effective cosmological
constant at early times be positive, and large). Beyond this, general renormal-
ization group arguments tell us that we cannot make sense of any quantum
field theory unless we include all low dimension couplings. This is certainly the
case with the cosmological constant; if it is not included in a generic quantum
field theory it will be there in the effective theory with a magnitude order
one in either the cutoff or the supersymmetry breaking scale. This general
expectation is fully born out in all the numerical work done on nonperturba-
tive approaches to quantum gravity. This includes the early work in euclidean
dynamical triangulations as well as the recent numerical work of Ambjorn,
Loll and collaborators on lorentzian, or causal, dynamical triangulation mod-
els [49]. Further the latter calculations show convergence is only possible if
Λ > 0. Indeed, all the evidence we have from explicit renormalization group
calculations, at both the perturbative and non-perturbative levels, tells us
that the theory cannot have a good low energy limit, leading to the recovery
of general relativity, unless the cosmological constant term is included in the
formulation of the theory.

We now turn to an introduction of quantum general relativity, for the case
of Λ > 0.

5 Gravity as a Gauge Theory

Let us jump right in and see the power of the connection between gauge theory,
gravity and topological field theory uncovered in loop quantum gravity, and
then go on to show how this perspective illuminates the geometry of de Sitter
spacetime.

A good way into the subject is to begin with the following challenge:
Suppose that you wanted to make a theory of gravity, but you were restricted
to using only the fields of an ordinary gauge theory. You are not allowed to
assume the existence of a metric, either as a background or as a dynamical
field. You have to work only with a gauge field. How close would you come to
general relativity?

The answer is that the simplest guess as to how to do this lands right on
the nose on general relativity. Here is how this goes:

It turns out to be most direct to reason in the Hamiltonian language. From
this point of view a spacetime is a manifold of the form Σ × R, where Σ is a
three dimensional manifold which will represent space, at least topologically.
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From a hamiltonian perspective the fields we are allowed are a connection,
Ai

a, and its conjugate momentum, Ea
i where a is a 3d spatial index and i is

valued in a lie algebra, G.
Thus, we have the Poisson brackets,

{Ai
a(x), Eb

j (y)} = δb
aδi

jδ
3(y, x) (6)

We know that in a hamiltonian formulation of a gauge theory there is one
constraint for each independent gauge transform [41]. The gauge invariances
of a gravitational theory include at least 4 diffeomorphisms, per point. Thus,

IGR =
∫

dt

∫

Σ

EaiȦai − NH− NaHa − wiGi − h (7)

where Ha generates the diffeomorphisms of Σ, H must be the so-called Hamil-
tonian constraint that generates the rest of the diffeomorphism group of the
spacetime (and hence changes of the slicings of the spacetime into spatial
slices) while Gi generates the local gauge transformations. h represents the
terms in the hamiltonian that are not proportional to constraints. However,
there is a special feature of gravitational theories, which is there is no way
locally to distinguish the changes in the local fields under evolution from their
changes under a diffeomorphism that changes the time coordinate. Hence h is
always just a boundary term, in a theory of gravity.

From Yang-Mills theory we know that the constraint that generates local
gauge transformations under (6) is just Gauss’s law

Gi = DaEai = 0 (8)

Note that Ea
i is a vector density, so there is no metric used in either the

Poisson brackets or Gauss’s law8.
Let us now guess the forms of the other constraints. First there must be

three constraints per point that generate the diffeomorphisms of the spatial
slice. Infinitesimally these will look like coordinate transformations, hence the
parameter that gives the infinitesimal change is a vector field. Hence these
constraints must multiply a vector field, without using a metric. Thus these
constraints are the components of a one form. It should also be invariant under
ordinary gauge transformations, as they commute with diffeomorphisms. We
can then ask what is the simplest such beast we can make using Ai

a and Ea
i ?

The answer is obvious, it is

Ha = Eb
i F

i
ab = 0 (9)

where F i
ab is the Yang-Mills field strength.

8 One thing to get used to in this field is that as there is no background metric,
while in the quantum theory the metric is a composite operator, one must be
completely explicit about all places the metric appears and all density weights.
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It is a simple exercise to show that Ha so defined does in fact generate a
spatial diffeomorphism (plus an ordinary gauge transformation) on the fields
Aa and Ea.

There remains one constraint per point, which generates changes in the
time coordinate, or else in the embedding of Σ in M = Σ ×R. This is called
the Hamiltonian constraint. Since its action is locally indistinguishable from
the effect of changing the time coordinate, it does contain the dynamics.

The Hamiltonian constraint must be gauge invariant and a scalar, since
the parameter it multiplies is proportional to the local change in the time
coordinate. But it could also be a density, so we have the freedom to find the
simplest expression that is a density of some weight. It turns out there are
no polynomials in our fields that have density weight zero, without using a
metric. But there are simple expressions that have density weight two. The two
simplest such terms that can be written, which are lowest order in derivatives,
are,

εabcTrEaEbEc and TrEaEbFab (10)

where the Tr is in the lie algebra G. If we need to we could go to terms
with more derivatives, but such terms will give trouble if we want the theory
to have a simple linearization, which will be useful to reproduce Newtonian
gravity and gravitational waves.

In fact these two terms already give Einstein’s equations, so long as we
take the simplest nontrivial choice for G, which is SU(2).

Thus, we take for the Hamiltonian constraint

H = εijkEaiEbj

(

F k
ab +

Λ

3
εabcE

ck

)

= 0 (11)

There is a place to put a free parameter Λ which indeed will turn out
to be the cosmological constant. As far as dimensions are concerned, Aa is a
connection and so has dimensions of inverse length. It will turn out that Ea

is related to the metric and so we should make the unconventional choice that
it is dimensionsless.

In fact, what we have here is Euclidean general relativity. If we want the
Lorentzian theory, we need only modify what we have by putting an ı into
the commutation relations, so we have instead of (6)

{Ai
a(x), Eb

j (y)} = ıGδb
aδi

jδ
3(y, x) (12)

I have also inserted a factor of Newton’s constant, G, which is necessary if Ea

is dimensionless.
The Einstein’s equations of course come from taking Poisson brackets with

the Hamiltonian, which is a linear combination of constraints,

H(N, va) =
∫

Σ

NH + vaHa (13)
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here N and va are related to the usual lapse and shift, which are in turn related
to the time-time and time-space components of the metric, respectively. In
fact, noting that H has density weight two, we see that N must have density
weight −1. Hence it is of the form of g00/

√
detqij , where qij is the spatial

metric. (This may seem pedantic but we will use it to good effect in the next
section.)

The simplest way to evolve is with zero shift, which corresponds to the
space-time components of the metric vanishing. The equations of motion are
then,

Ȧai = {Aai, ∫ NH} = NıGεijkEbj(2F k
ab + ΛεabcE

ck) (14)

Ėai = {Eai, ∫ NH} = ıGεijkDb(NEa
j Eb

k) (15)

These equations, together with the seven constraints make a diffeomor-
phism invariant field theory whose only degrees of freedom are an SU(2)
connection and its conjugate electric field. To see that the theory is consis-
tent one should check the constraint algebra, in fact it is first class. One can
then count degrees of freedom and find that there are 2 canonical degrees
of freedom per point. If one linearizes, one gets right away the laws for the
propagation of spin 2 massless fields.

How can this be, when there is no metric in the world our equations
describe? In fact there is one, it is hidden in the gauge fields. The theory we
have is general relativity, with the following identifications. Ea

i is related to
the three metric qab by

det(q)qab = EaiEbjδij (16)

The determinant is there because the expression is a density of weight two.
The SU(2) connection Aa turns out to be, for solutions, the self-dual part

of the spacetime connection. For Lorentzian solutions this is complex, and its
real and imaginary parts each have a geometrical interpretation.

Aai = 3d spin connectionai +
ı√
q
KabE

b
i (17)

where Kab is the extrinsic curvature of the 3 manifold Σ embedded in the
spacetime, which in turn is essentially the time derivative of the three metric9.

6 The de Sitter Solution as a Gauge Field

It is not of course obvious to see that the theory we have constructed is in
fact Einstein’s theory, or where the correspondences I’ve just mentioned come
from. A bit later we will derive these from an action principle. But for now I
want to only show how the de Sitter solution fits into this framework.
9 For more details on the canonical formulation of GR in Ashtekar-Sen variables,

see [38, 39] as well as the books [2].
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We begin by noting that a family of solutions to the constraints can be
read off immediately, by inspection. These are those that satisfy,

F i
ab = −Λ

3
εabcE

ci (18)

It is easy to see that they satisfy all seven10 constraints. We call these self-dual
solutions as they have the magnetic fields proportional to the electric fields.

Let us examine the simplest one of these. We can take as an ansatz that
Ai

a is proportional to δi
a. Of course this breaks gauge invariance but this is

what we have to do if we want to write an explicit solution.
As I know the answer, I will put in the right parameters:

Aai = ı

√
Λ

3
f(t) δai �→ Fabi = −f2(t)

Λ

3
εabi (19)

where f(t) is a function of the time coordinates.
Taking Ai

a to be purely imaginary makes sense in light of (17), it means
that we are making an ansatz that the three geometry is flat, so the three
dimensional spin connection vanishes. The metric can then be taken to be
homogeneous, as must also be its time derivative, which is the imaginary part
of Ai

a.
By the self-dual initial conditions we see that

Eai = f2δai �→ qab = f2δab (20)

As we have satisfied the self-dual condition all the constraints are satisfied.
We merely have to plug into the equations of motion (14, 15) to find the
evolution equations for f . Both equations of motion agree that

ḟ = N

√
Λ

3
f4 (21)

Remembering that N is an inverse density, we should take �→ N ≈
det(q)−1/2 = f−3. This gives us

ḟ = N

√
Λ

3
f4 =

√
Λ

3
f (22)

so that f = e
√

Λ
3 t.

With the identifications we have made this gives the de Sitter spacetime
in spatially flat coordinates11:

ds2 = −dt2 + e2
√

Λ
3 t(dxa)2 (23)

10 3 generate spatial diffeo’s, three generate SU(2) gauge transformations plus the
Hamiltonian constraint.

11 A good review of the different coordinations of de Sitter spacetime is in [78].
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7 Hamilton-Jacobi Theory, de Sitter Spacetime
and Chern-Simons Theory

Before we get serious and go back to the action and show why this is really
Einstein’s theory, there is one more simple trick we can do, which brings to
light a connection between de Sitter spacetime and topological field theory.

To see this connection we may begin by asking what insight Hamilton-
Jacobi theory may throw on the solutions we have been considering. To use
Hamilton-Jacobi theory we assume that there is a Hamilton-Jacobi functional
S(A) on the configuration space. As we are studying a gauge theory the con-
figuration space is the space of the connections Aa on the three manifold
Σ.

The conjugate electric field must then be the gradient of the Hamiltonian-
Jacobi function,

Eai = −δS(A)
δAai

(24)

We found that all seven constraints are solved with the self-dual ansatz
(18). This means that the Hamilton-Jacobi function must satisfy a first order
differential equation,

F i
ab = −Λ

3
εabcE

ci =
Λ

3
εabc

δS(A)
δAci

(25)

This integrates immediately to

SCS =
2

3Λ

∫
YCS (26)

Here YCS is the famous Chern-Simons invariant, given by

YCS =
1
2
Tr

(

A ∧ dA +
2
3
A3

)

. (27)

It satisfies δ
∫

YCS

δAai
= 2εabcF i

bc.
Thus, the self-dual solutions follow trajectories in configuration space which

are gradients of the Chern-Simons invariant. Not only is de Sitter spacetime
one of these, there is the remarkable fact that, while there are an infinite
number of self-dual solutions for Euclidean signature, there is only one for
Lorentzian signature and it is de Sitter spacetime.

This suggests that the semiclassical state that describes de Sitter is

ΨK(A) = N e
3
2λ

∫
YCS (28)

N is a normalization depending only on topology [40].
In fact, this is an exact quantum state as was shown in 1990 by Hideo

Kodama [35]. We will return to the Kodama state and the physics that may
be derived from it. But first we want to go back and find out why what we
have been studying is Einstein’s general theory of relativity.



378 L. Smolin

8 General Relativity
as a Constrained Topological Field Theory

In the last sections a very mysterious fact emerged, which is that when general
relativity is written in such a way as to bring it close to gauge theory, in
terms of field content and geometry, we fell upon a close relationship between
an important set of solutions-the self-dual solutions, and a topological field
theory. Given the ease by which topological field theories may be quantized
and studied, as well as their remarkable connections with various fields of
algebra, representation theory and topology, it is very important to know if
this is an accident or if it has its roots in some deep relationship between
gravity and topological field theory. In this section we will show that it is
indeed no accident and that general relativity and topological field theory are
deeply connected at the level of the action principle.

BF Theory

We begin with a four dimensional topological field theory called BF the-
ory [79]. We will work on a four manifold M = Σ × R, where Σ will be the
spatial topology. There is no metric, and no other fixed background field.

We introduce now two fields. The first is an SU(2) connection Ai
µ, where

µ indices the spatial coordinates (to be suppressed when we use form notation
and i = 1, 2, 3 label the generators of SU(2). The second field is a two form,
Bi

µν which is also valued in the SU(2) generators. To begin with we take them
both real.

The action we use is,

IBF =
∫

Bi ∧ Fi +
Λ

2
Bi ∧ Bi . (29)

It is easy to derive the equations of motion,

F i = −ΛBi , D ∧ Bi = 0 (30)

We see that the curvature is constrained to be proportional to the B field,
with Λ the constant of proportionality. Bi is in turn is constrained to be
covariantly constant. If one counts one finds there are no local degrees of
freedom, hence the theory is topological. It is also invariant under Diff(M),
the group of diffeomorphisms of the manifold. Because of the form of the
action, this topological field theory is called BF theory.

Self-Dualology

General relativity is in fact closely related to BF theory. To see this, we
need first to understand the dynamics of general relativity in 4 spacetime
dimensions in terms of self-dual and antiself-dual connections and curvatures.
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Let us then have a four dimensional spacetime metric gµν . We will at first
take the spacetime to be Euclidean, then we will see how things are modified
for the Lorentzian case.

It is convenient to work with frame fields, ea
µ, with a = 0, 1, 2, 3 = 0, i

being four dimensional frame field indices. They are related to the metric by

gµν = ea
µeb

νηab (31)

with ηab the flat metric on the tangent space.
Now we need do a little self-dualology. Let us consider an antisymmetric

tensor Aab in the tangent space. Given the totally antisymmetric εabcd and
the metric ηab we may divide Aab into its self-dual and antiself-dual parts

A±
ab =

1
2

(Aab ± A∗
ab) (32)

where A∗
ab = 1

2ε cd
ab Acd. We have

(A±
ab)

∗ = ±A±
ab (33)

Note that these equations are consistent with ∗∗ = +1, which is the case for
Euclidean signature.

Among the objects that can be decomposed this way are the spin con-
nection one form Aab and the curvature two form Fab = dAab + 1

2A c
a Abc.

These are valued in the SO(4) lie algebra. The decomposition of Aab into A+
ab

and A−
ab corresponds to the Lie algebra identity SO(4) = SO(3)L ⊕ SO(3)R.

There are then three generators (per form index) in A+
ab and they correspond

to SO(3)L. These three generators may then be labelled by i = 1, 2, 3 by the
correspondence A+

i = A+
0i = 1

2ε jk
i A+

jk.
It is important to note that F+

i , being also valued in SO(3)L is an SO(3)
gauge field which is a function only of the SO(3)L connection A+

i .
It turns out that not only can the connection and curvature information in

a four manifold be decomposed in self-dual and antiself-dual parts, the same
is true for the metric information. Given the metric gµν one can construct
three two forms from the self-dual parts of ea ∧ eb, as

Σi = e0 ∧ ei + εi
jkej ∧ ek (34)

These forms are self-dual by construction in the internal indices. Each of
the three is also self-dual in the spacetime sense

∗Σi
µν ≡ εµνλσgλαgσβΣi

µν = Σi
αβ (35)

From Self-Dual two forms to General Relativity

The connection of general relativity to BF theory comes about by identifying
the SO(3) valued Bi fields, which are three two forms, with the self-dual two
forms Σi corresponding to some metric gµν . Let us see how this works.
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To make the correspondence we cannot just plug

Bi = Σi = e0 ∧ ei + εi
jkej ∧ ek (36)

into the equations of motion, (30), as the restriction (36) reduces the number
of degrees of freedom per point, and there are already zero degrees of freedom
per point. But we can plug (36) into the action (29) for BF theory to find
that,

IJSS = IBF |Bi=Σi =
∫

(e0∧ei+εi
jkej∧ek)∧Fi+

Λ

2
εabcde

a∧eb∧ec∧ed (37)

This is actually an action for general relativity [50]. In fact it is easy to see
that it gives the same equations of motion as the Palatini action

IPalatini =
∫

εabcd

(

ea ∧ eb ∧ F cd +
Λ

2
ea ∧ eb ∧ ec ∧ ed

)

(38)

Using the projections into the self-dual and antiself-dual parts of the cur-
vature, our strange looking action (37) can be written as,

IJSS =
∫

εabcd

(

ea ∧ eb ∧ F+cd +
Λ

2
ea ∧ eb ∧ ec ∧ ed

)

(39)

The equations of motion that come from varying the self-dual part of the
connection, A+

i are
(D+Σ)i = 0 (40)

These three equations are in fact the self-dual projection of the six equation
of motion that corresponds to varying the Palatini action by the full SO(3)⊕
SO(3) connection, Aab to find,

∇ea ∧ eb = 0 (41)

It is well known that the solution to this last (41) is that Aab is equal to the
SO(4) spin connection, ωab corresponding to the frame field ea. The solution
to the equations of motion of the modified action (40) are similar, they are
that A+

i is equal to ω+ab, which is the self-dual part of the spin connection of
ea.

The other equation of motion of the Palatini equation is, with the connec-
tion taken to be the spin connection, the Einstein equations,

εabcd

(
eb ∧ F cd + Λea ∧ eb ∧ ec ∧ ed

)
= 0 . (42)

The equation of motion of the modified equation is instead

εabcd

(
eb ∧ F+cd(ω+) + Λea ∧ eb ∧ ec ∧ ed

)
= 0 (43)

This differs from the Einstein equation (42) by a single term, which is
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ec ∧ F cd(ω) , (44)

but this vanishes by the Bianchi identity that sets Rµ[νλσ] = 0.
This establishes the equivalence of (39) to general relativity with Euclidean

signature12.

Back to BF Theory

We are not yet done for as discovered, first by Plebanski [51], and then by
Capovilla, Dell and Jacobson [52], we can use what we have just learned to
put the action in a form that shows a direct relationship to BF theory. To
do this we ask whether there are conditions on the two form fields Bi which
are sufficient for there to exist a metric, and hence a frame field, ea such that
Bi are the self-dual two forms of ea. The answer is yes, these are the five
equations

Bi ∧ Bj =
1
3
δijBk ∧ Bk (45)

This is easy to see one way, by plugging in, for the other, see [52].
Why five equations? There are 18 components in the Bi’s minus three

gauge degrees of freedom for the SO(3) rotations that mix them up, minus
five equations yields the 10 components of the metric gµν .

Thus, general relativity is the consequence of varying the BF action with
the Bi fields subject to the five constraints, (45). Thus, if we add these con-
straints times lagrange multipliers to the BF action, we get an action for
general relativity in the form,

IPlebanski =
∫

Bi ∧ Fi +
Λ

2
Bi ∧ Bi − 1

2
φijB

i ∧ Bj (46)

so long as φij itself is constrained to be symmetric and tracefree.
Actually we can incorporate the cosmological constant term by requiring

instead that
φ i

i = −Λ; φ[ij] = 0 (47)

so that the action is now,

IPlebanski =
∫

Bi ∧ Fi − 1
2
φijB

i ∧ Bj (48)

Although we will not need it in what follows, it is interesting to note that
since the action is quadratic in the Bi these can be integrated out (or solved
for) to find an even simpler form for the action
12 Except that, as in the Palatini case, the fact that the action and equations of

motion are polynomial means there are solutions when det(e) = 0 that would not
be non-degenerate solutions of general relativity. Thus the space of solutions has
been expanded by the addition of a kind of boundary that includes solutions with
degenerate frame fields.
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ICDJ =
∫

F i ∧ F j(φ−1)ij (49)

Thus, we see that an action can be written for general relativity with a non-
zero cosmological constant, in which the metric does not appear at all. All
that appears is the curvature of the left handed part of the spin connection,
and a new field φij , whose trace is constrained by (47) to be the cosmological
constant. The metric is instead a composite field, which arises only for solutions
of the equations of motion.

And what is the physical interpretation of the new field φij? To answer
this we need only look at the field equation gotten from varying Bi in the
Plebanski action, (48).

F i = φi
jB

i (50)

Since we learn by varying φ that there exists a metric, whose self-dual two
form Bi becomes, we learn that the φij are just the components of the self-
dual half of the curvature two form, when expanded in components of the
frame fields, or equivalently, directly in terms of the self-dual two forms of the
metric. So the action (49) codes for the metric in the backhanded way that
the φij have to turn out to be the components of the curvatures F i expanded
in frame field components of that metric. Very sneaky, but effective, as we
shall see.

The Same Thing with Lorentzian Signature

So far everything was presented assuming the metric has Euclidean signature.
But for real physics we need the metric to be Lorentzian.

The same steps yield a connection between Lorentzian general relativity
and BF theory, but it is a bit more complicated because all the fields become
complex. To understand this it is best to proceed in two steps. First, we go
back and fix the definition of self-dual fields. This is necessary because, as
may be easily checked, for Lorentzian signature ∗∗ = −1. To accommodate
this, we must insert an ı into the definition of self-dual tensors,

A±
ab =

1
2

(Aab ± ıA∗
ab) (51)

Thus, we now have
(A±

ab)
∗ = ±ıA±

ab (52)

This means that the self-dual connection and curvature components A+
ab

and F+
ab are now complex. That is, the left handed part of an SO(3, 1) con-

nection is really a complex one form valued in the complexification of SO(3).
Due to the ı in (51) the action now has the form,

ILorentz = ı

∫
Bi ∧ Fi − 1

2
φijB

i ∧ Bj (53)
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One may wonder whether the fact that A+ and A− are both complex has
doubled the degrees of freedom. The answer depends on whether or not we
want the spacetime frame fields ea to be real. If we don’t require the frame
fields to be real then we have extended the theory to allow all solutions of
Einstein’s equations where the metric is complex. In this case we have doubled
the number of degrees of freedom. However, if we want the metric, and the
frame field components to be real than there is a restriction on the self-dual
and antiself-dual components, coming from the fact that the spin connection
of the metric is real. Thus, we have

Ā−
i = A+

i (54)

This is an important difference from the Euclidean theory, in which A+ and
A− are independent, but both real.

Nevertheless, we can proceed as follows. We can consider the JSS action,
(39) for the case of real ea but complex A+

i . The equations of motion then still
constrain the A+

i to be the self-dual parts of the spin connection and since the
ea are assumed real we still get the real Lorentzian Einstein equations from
(37). The only difference is there should be an ı in front of the whole action.

The next stage is to eliminate the metric completely from the action, by
going to the Plebanski action (48). Here there is no simple way to incorporate
the condition that the metric is real and Lorentzian. The problem is that the
φij ’s are complex for real, Lorentzian metrics. The simplest thing to do seems
to be to simply consider the actions (48) and (49) for complex fields Ai and
φij . One then gets the complexified Lorentzian Einstein equations. One can
then add to the field equations the initial conditions that the frame field or
metric components are real. The field equations are complex, but they have
the property that restricted to initial data in which the metric is real, the
solutions will conserve the reality of the metric.

This may seem a strange thing to do, but from the point of view of the
quantum theory it is not so bad to split the field equations into polynomial
equations, which are complex, plus reality conditions on the fields. The reason
is that in quantum theory the reality conditions become hermiticity conditions
on operators, and these are different from the operator equations of motion,
in that they involve the inner product. Strictly speaking, in quantum theory
one always works with the complexified operator algebra, and imposes reality
conditions through the choice of the inner product. So to do the same in
quantum gravity is not very much of an innovation13. This is the strategy we
will take up when we study the Lorentzian theory.
13 For this reason, in the early days of loop quantum gravity the strategy of express-

ing the reality conditions on the metric only through the inner product, while
working with a complex self-dual connection, seemed a good one as it greatly
simplified the dynamics and led to many new results. More recently another al-
ternative was adopted in many calculations, in which one worked with another
SO(3) connection, which is real, invented by Barbero [53]. This leads to more
complicated constraint equations which, however, Thiemann showed were still
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Self-Dual Spacetimes and the de Sitter Solutions

The equations of motion gotten from the Palatini action are,

D ∧ B = 0 , F i = φi
jB

j (55)

We can see immediately the self-dual solutions.

Φi
j = −Λ

3
δi
j → F i = −Λ

3
Bi (56)

This shows us how the de Sitter and self-dual solutions we obtained from
the Hamiltonian picture may be obtained directly as solutions to the Euler-
Lagrange equations.

Derivation of the Hamiltonian Formalism

Finally, we can briefly sketch how the constraints of the hamiltonian that we
guessed in Sect. 5 above are derived from the forms of the action we have just
described. It is easiest to work with the CDJ form of the action (49).

We begin by finding the canonical momenta, which is

Eai = εabcF j
bc(φ

−1)i
j (57)

with the canonical momenta for Ai
0, E0i of course vanishing.

The action can then be written as

ICDJ = ı

∫
dt

∫

Σ

EaiȦai − Ai
0Gi (58)

where the ı is there only for the Lorentzian case. Because of this the Poisson
brackets for the Lorentzian case have the form (12) for the Lorentzian case
and (6) for the Euclidean theory.

The Gauss’s law constraint (8) then holds to preserve the vanishing of
E0i. However there are additional constraints, which arise from the fact that
φij is itself subject to constraints, (47), being symmetric and having trace
fixed to be the cosmological constant. These must be imposed to recover the
equations of motion, because without them the relationship between Ȧai and
the momenta cannot be inverted.

It is easy to check that the constraints that arise from the antisymmetric
part of φij vanishing is the diffeo constraint, (9), while the constraint that
arises from its trace being fixed is the Hamiltonian constraint (11). Thus we
arrive at the hamiltonian formulation we developed by guess work in Sect. 5.

manageable [54]. However, this strategy does not help in the case of the results
presented here, and so is not adopted in this paper.
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9 Boundaries with Λ > 0 and Chern-Simons Theory

There are several reasons we will want to consider spacetimes with boundaries.
These include the important subjects of how we realize the Bekenstein bound,
study the entropy of black hole and cosmological horizons and express the
holographic principle. Depending on the context these boundaries will be null,
as at horizons, or timelike as in the boundary of AdS spacetimes or even
Euclidean, if we are working in that context. These boundaries may be at
infinity, or they may have finite area.

Before we can study the quantum theory with boundaries we have to
understand the role boundaries play in the classical theory. Generally when
there is a boundary we will not have a sensible variational principle unless
the theory is modified to take the boundary into account. Normally these
modifications consist of two parts. We have to add a boundary term to the
action, which just depends on the fields pulled back into the boundary. And
we have to add boundary conditions. Both the boundary action and boundary
conditions must be chosen so that the variations of the actions by the fields
are pure bulk terms, so that the equations of motion are sensible.

Here we will consider a region of spacetime with topology M = Σ × R
with a boundary ∂Σ = B. We will study only one particular class of boundary
conditions, which are called self-dual boundary conditions [27].

The basic idea of these boundary conditions is to require that at the bound-
ary some components of the fields satisfy the self-dual relations (18) which
define the de Sitter (or with Λ < 0 anti-de Sitter) spacetime [27]. We cannot
require all the components satisfy the self-dual conditions, otherwise only self-
dual solutions will be allowed. But we can get interesting boundary conditions
by requiring only a subset of the components satisfy the self-dual relations (18)
when pulled back into the boundary.

We will consider cases in which the spatial components of the self-dual
relation, pulled back into the boundary are satisfied, in at least one spatial
slicing of the boundary. Thus, we impose,

F i
ab|B = −Λ

3
εabcE

ci|B (59)

There may be other components of the boundary condition, imposed on the
timelike components of the boundary fields, for details about this in the
Euclidean case see [27], in the timelike case see [44] in the null case see [55, 56].

To complement the boundary condition we must add a boundary term to
the action. The natural one to add turns out to be the Chern-Simons action of
the connection Ai

a pulled back into the boundary [27]. The action then reads,

IGR = ε

∫

M
Bi ∧ Fi + φijB

i ∧ Bj +
εk

4π

∫

∂M
YCS(A) (60)

where, from now on, ε = ı for the Lorentzian theory and unity for the
Euclidean theory.



386 L. Smolin

There is in both cases a relation between the coupling constant, k of the
Chern-Simons theory and the cosmological constant.

k =
6π

λ
, λ = �GΛ (61)

This ends our study of the classical physics we need to know to understand
the quantum theory of gravity with Λ > 0. The key lesson of this survey is the
connection to topological field theory, which we have seen arises three ways
in the classical theory:

– The action for GR has the form of a constrained topological field theory.
– There is a natural class of boundary terms which require that the boundary

term added to the action is the Chern-Simons action of the left handed spin
connection, pulled back to the boundary.

– The deSitter and other self-dual solutions follow gradients of the Chern-
Simons invariant, which can then be taken as the Hamilton-Jacobi function.

10 The Kodama State

We begin with a very brief review of how diffeomorphism invariant theories are
to be quantized in the Hamiltonian approach. For more details on the basic
approach, see [2, 57, 58, 59]. We do not here describe path integral methods
in loop quantum gravity, but they are well developed, see, for example, [60,
61, 62, 63, 64, 65, 66].

10.1 A Brief Review of Quantization

The approach taken here is Dirac quantization. This means that the whole
unconstrained configuration space is quantized. This defines a kinematical
state space Hkinematical. The constraints are imposed as operator relations on
the states, as in

Ĉ|Ψ〉 = 0 (62)

where Ĉ stands for operators representing all the first class constraints of the
theory. The solutions to the constraints define subspaces of the Hilbert space.
A physical state must be a simultaneous solution to all the constraints.

Often this is done in two steps. The kernel of the gauge and spatial dif-
feomorphism constraints is called the diffeo-invariant Hilbert space, and is
labelled Hdiffeo. The simultaneous kernel of all the constraints is called the
physical Hilbert space, Hphysical.

Generally, new inner products need to be introduced on these Hilbert
spaces, because solutions to the constraints are not normalizable in the inner
products on the kinematical Hilbert space.
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We will work in this and the next four chapters with the connection rep-
resentation of quantum gravity [57]. After this we will switch to the loop (or
spin network) representation. As in the case of the position and momentum
representations in ordinary quantum mechanics these are equivalent, but com-
plementary, in that certain calculations are easier to do in one representation
than another.

Both representations are defined as representations of a certain algebra of
classical observables.

From a naive point of view, we could take the canonical commutation
relations (6) as the basis of the quantization. Thus, we heuristically define the
connection representation by the relations

〈A|Ψ〉 = Ψ(A) Eai = −�G
δ

δAai
(63)

These satisfy the commutation relations,

[Ai
a(x), Eb

j (y)] = �Gδb
aδi

jδ
3(y, x) (64)

Note that because there is an ı in the classical commutation relation (6) no
ı appears here14. Unless explicitly mentioned, from now on we are working
with the Lorentzian theory.

However, to discuss carefully the regularization of the operators that define
the theory, we need to define the quantization in terms of a different set of
observables, which are the Wilson loops

T [γ,A] = TrPe
∫

γ
A (65)

in the fundamental, spin 1/2 representation, and the elements of area,

A[S] =
∫

S

√
h (66)

where S is a surface in Σ and h is the determinant of the induced metric in
the surface. These have very beautiful Poisson bracket relations,

{T [γ,A], A[S]} = �GInt[γ,S]T [γ,A] (67)

where Int[γ,S] is the intersection number of the loop and the surface.
For the definitions of the connection and loop representations in terms

of this algebra, see [58]. Here we will work with naive operators and mostly
neglect the details of regularization procedures, which can be found in the
references. However, it is very important to stress that everything said here
does go through when all the details of the regularization procedures are
included.

We now need the expressions of the constraints in the connection repre-
sentation. These are
14 Were we working instead with the Euclidean theory there would be an ı here.
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– Gauss’s law:
GiΨ(A) = Da

δ

δAai
Ψ(A) = 0 (68)

– Diffeomorphism constraint

HaΨ(A) = F i
ab

δ

δAbi
Ψ(A) = 0 (69)

– Hamiltonian constraint:

HΨ(A) = εijk
δ

δAai

δ

δAbj

(

F k
ab +

λ

3
εabc

δ

δAck

)

Ψ(A) = 0 (70)

Note that with the ordering given here, the quantum algebra of constraints
can be shown, after a suitable regularization procedure, to be consistent [2,
39, 57, 67]. This means that the commutators give terms proportional to
operators, which are of the form of (new operator) × operator constraints.
Thus, there are a non-trivial space of states in the simultaneous kernel of all
the constraints. In fact, infinite dimensional spaces of simultaneous solutions
to all the regularized constraints have been found and studied [54, 58].

For details of the different regularization procedures that can be applied
to define these constraints, and the infinite dimensional families of solutions
that have been found, see [54, 58, 67].

For the time being, we will be concerned with the case that Σ is compact,
and without boundary. A bit later we will show how boundaries are included
in the quantum theory.

10.2 The Kodama State

We will be concerned first of all with a particular simultaneous solution to
all the constraints, which is the Kodama state we first introduced in Sect. 7.
This is the Kodama state, defined by [35]

ΨK(A) = N e
3
2λ

∫
YCS (71)

To show that this is a solution to all the constraints, one makes use of the
identity,

δΨK(A)
δAck

=
3
2λ

εabcF i
abΨK(A) (72)

Thus, the Kodama state is in the kernel of the operator

J i
ab = F k

ab +
λ

3
εabc

δ

δAck
(73)

and satisfies the Hamiltonian constraint because we have chosen an ordering
such that
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H = εijk
δ

δAai

δ

δAbj
· J k

ab (74)

J i
ab is of course an operator version of the self-dual condition.

The Kodama state solves the other constraints because it is manifestly
invariant under diffeomorphisms of Σ and small gauge transformations. (Note
that only small gauge transformations are generated by constraints.)

One might think that invariance under large gauge transformations would
be achieved because k is an integer. However, this would be wrong, as there
is no ı in the Chern-Simons state.

Invariance under large SU(2) (real) gauge transformations is instead got-
ten by choosing N to be a topological invariant also sensitive to them. For
details of this, see the paper by Soo [40]. There is a reason for choosing k to
be an integer, we will see below.

It will also be important to note that as Aa is complex, so is its Chern-
Simons invariant. Hence the Kodama state is complex.

The reader may want to ask a few questions:

– Does the Kodama state survive the details of a regularization
procedure, needed to define the rigorous action of the constraints?
Yes, for details see [67].

– Is the Kodama state normalizable?
Certainly it is not normalizable in the naive inner product. But this is to be
expected, on two grounds. First because solutions to constraints are generally
never normalizable in the inner product of the kinematical Hilbert space [2].
Second, because, as we will see below, there are components of the con-
nection that function as a time coordinate on the configuration space [36].
The physical inner product cannot integrate over time, otherwise all energy
eigenstates would be non-normalizable. Hence a new physical inner prod-
uct needs to be chosen, and, given the fact that it satisfies all the physical
properties we require of a physical state, it makes sense to take as a condi-
tion for the physical inner product that the Chern-Simons state, as well as
its perturbations that we see below represent long wave graviton states, are
normalizable.
We might note that, as has been pointed out by [68, 69], there is an analogue
of the Kodama state in Yang-Mills theory, where it fails to be a normalizable
state. This does not, however, imply that the Kodama state in quantum
gravity must be non-normalizable, for reasons described in [70].

– Suppose we construct an analogue of the Kodama state for the
linearized theory of gravitons on a de Sitter background, by trun-
cating the Chern-Simons invariant to quadratic order in perturba-
tions. Is the result a normalizable state of the linerarized theory?
The answer is no for the Lorentzian theory, while for the Euclidean theory
the state is delta-functional normalizable [70]. Whether this is an indication,
however, of a pathology with the state itself, with the linearization, is not
yet clear.
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– But, is the Chern-Simons state really a ground state? Does it
really correspond to the vacuum?
It is if one can study its weakly coupled excitations and they reproduce quan-
tum field theory in curved spacetime and long wave length gravitons on de
Sitter spacetime.
Note that we need only recover these for low energies in Planck units.
We show this below for both matter fields and for gravitons.

But first we check that the theory reproduces one of the basic features of
quantum theory in de Sitter spacetime, which is that there is a temperature
associated with a positive cosmological constant.

11 The Thermal Nature
of Quantum Gravity with Λ > 0

It is well established that quantum field theory on de Sitter spacetime must
be interpreted as irreducibly thermal [71], with a temperature given by

T =
1
2π

√
Λ

3
(75)

This can be understood as due to the presence of the horizon. Alternatively,
one can show that any quantum field on de Sitter spacetime, satisfies the
KMS condition for a thermal state. This is that the continuation of any
correlation function to imaginary time coordinate tE = ıt be periodic, with
period β = 1/T .

What is not so well known, however, is that in loop quantum gravity the
full background independent quantum theory of gravity plus arbitrary matter
fields has also an irreducibly thermal nature. This is because it satisfies the
KMS condition on the whole configuration space15.

To apply the KMS condition to quantum gravity we need two things: 1) a
definition of a time coordinate on the configuration space and 2) a definition
of the continuation to Euclidean time. In a background independent theory
we cannot use a time coordinate on a given classical spacetime, as that is
just a given classical solution. We need instead a time coordinate on the
configuration space of the theory.

We saw above that there is in fact a preferred time coordinate on the
configuration space, which is picked out by the semiclassical expansion around
the Kodama state. It is equal to the imaginary part of the Chern-Simons
invariant, (91). There are other arguments that confirm that (91) is a good
time coordinate on the configuration space, for example it is always normal
to the gauge directions in the tangent space of the configuration space. For
details see [36, 72]. The Chern-Simons time coordinate is dimensionless, as we

15 The argument of this section is taken from [36].
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saw in the last sections when we evaluate it on a given solution we have to
scale it appropriately.

It is interesting to note that (Lorentzian) Kodama state can be written

ΨK(A) = eıMTCS e
k
4π Re

∫
YCS(A) (76)

where the dimensionless “energy” is

M =
k

4π
=

3
2λ

(77)

Now we need a definition of how to continue to Euclidean time. As we are
dealing with a theory of spacetime we should continue the whole theory to
Euclidean signature. This requires the following changes: The connection Aai

becomes a real, SU(2) connection and there is now an ı in Eai = ıδ/δAai. As
a consequence of which the Chern-Simons state is now,

ΨEuc
K (A) = e

ık
4π

∫
YCS(A) (78)

The Euclidean time coordinate is then just

TECS =
∫

YCS(A) (79)

as can be seen directly, or by repeating the derivation from the semiclassical
theory. Thus, the Euclidean wavefunction is,

ΨEuc
K (A) = eı k

4π TEuc (80)

This is periodic in TEuc. However, this is not enough to show that the KMS
condition is satisfied, for that requires that every correlation function be pe-
riodic.

Interestingly enough, this is in fact the case whenever Σ is chosen so that
π3(Σ) is nontrivial. In this case there are large gauge transformations that
have the property that

∫
YCS(A) →

∫
YCS(A) + 8π2n (81)

where n is the winding number of the large gauge transformation. This means
that TECS =

∫
YCS(A) is actually a periodic function on the configuration

space. As a result, every correlation function will satisfy the KMS condition
in TECS , no matter what the state. That is, by equating configurations of Aai

that differ by a large gauge transformations we reduce the topology of the
configuration space to a circle, which is parameterized by TECS .

As a result of this universal periodicity there is a temperature, given in
dimensionless units by Tdimless = 1

8π2 . This dimensionless temperature corre-
sponds to the fact that the time coordinate on the configuration space, TCS

is dimensionless.



392 L. Smolin

It is interesting to ask if this dimensionless temperature corresponds to
the temperature on de Sitter spacetime. To investigate this we may consider
a trajectory in configuration space that corresponds to a slicing of de Sitter
spacetime with topology S3 × R. Such coordinates are given by

ds2 = −
(

1 − Λr2

3

)

dt2 +
1

(
1 − Λr2

3

)dr2 + dΩ2 (82)

To work out the scaling of the coordinate t on the solution with the coordinate
TCS on the configuration space, we compute

∂TCS

∂t
=

∫

S3
N{TCS(A),H} (83)

where the (densitized) lapse N is read off from the solution (82). A simple
calculation gives

∂TCS

∂t
= 4π

√
Λ

3
(84)

Thus, if the Euclidean continuation TECS is periodic with period 8π2, the
Euclidean continuation of the time coordinate on the solution must be peri-

odic with period 2π
√

3
Λ . In fact, this is the periodicity of the Euclidean de

Sitter solution, in these coordinates! This leads to the temperature of de Sitter
spacetime, (75).

Thus, we learn that the periodicity of the Euclidean de Sitter spacetime is
a consequence of that spacetime having an interpretation as a trajectory on
the configuration space of SU(2) connections. The periodicity of the Euclidean
Schwarzschild solution is a consequence of the fact that the whole configura-
tion space is periodic due to the action of the large gauge transformations.
This is yet another connection between the properties of the gauge theory and
the physics of gravitation. Thus, the thermal nature of quantum field theory
on de Sitter spacetime is a consequence of a deeper and more general result,
which is that the whole quantum theory with Λ > 0 is thermal.

Finally, we can deduce one more fact from these considerations. For the
analysis we have just given to be relevant to the Kodama state, it must be
that the Euclidean Kodama state is itself well defined under large gauge trans-
formations. This will only be the case if k is an integer.

12 The Recovery of QFT on de Sitter Spacetime

Now that we have verified that the thermal properties of de Sitter spacetime
are extended to the quantum gravity domain, we can go on to examine the
properties of the Kodama state. Here we will be mostly concerned with its
properties at the semiclassical level.
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The first thing we can do to probe the Kodama state is to add matter, and
then see what happens if we excite the matter in the presence of the state16.

Adding matter fields is straightforward. In the language of loop quantum
gravity it is simple to add all kinds of matter: gauge fields, fermions, scalars,
antisymmetric tensor gauge fields17. For what we are doing here we do not
need any details, so we will refer to all matter fields as φ, their canonical
momenta as π and the matter hamiltonian as Hmatter(φ, π).

All the constraints get new terms in the matter fields. For the Hamiltonian
constraint we have

Htotal = Hgrav(A,E) + Hmatter(A,E, φ, π) (85)

We will work in an extended connection representation in which the states
are functionals Ψ [A,φ], π is represented by −ı�δ/δφ and so forth.

As in the pure gravity case, the gauge and diffeomorphism constraints,
applied to the states, require that the states are gauge invariant and invariant
under diffeomorphisms of Σ.

This is straightforward, so we focus here on the hamiltonian constraint.
To study perturbations of the Kodama state,we follow the proposal of

Banks [75], which is to study the semiclassical approximation in quantum
cosmology by a version of the Born-Oppenheim approximation, in which the
gravitational degrees of freedom play the role of the heavy, nuclear degrees
of freedom, while the matter degrees of freedom play the role of the light,
electron degrees of freedom.

Thus, we consider a product state of the form

Ψ(A,φ) = ΨK(A)χ(A,φ) (86)

The exact Hamiltonian constraint is then of the form
(
Hgrav + Hmatter

)
ΨK(A)χ(A,φ) = 0 (87)

The idea is to make an approximation to the exact equations, which is
described in terms of quantum matter fields propagating on a classical back-
ground spacetime (A0, E0). This approximation is gotten by expanding the
Wheeler-De Witt equation (87) in a neighborhood of a classical solution. We
use the fact that the Kodama state can be understood as a WKB state as
well as an exact solution. This tells us that the classical background (A0, E0)
must be de Sitter spacetime, as it is the unique solution gotten by taking SCS

to be the Hamiltonian-Jacobi function, consistent with the requirement that
the Lorentzian metric be real.
16 The material in this section comes from [36] to which the reader is referred for

more details.
17 There is also no obstacle to extending the theory to supergravity, so long as Λ ≤ 0

in four dimensions [73, 74]. This has been worked out in some detail up to N = 2
in four dimensions. For some partial results on d = 11 supergravity, the interested
reader can see [48].
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We will describe the details of this approximation, for the case of a scalar
field, below. As a prelude, we mention here the basic features of the results.

As shown in [36], we find that an approximation to (87) takes the form of
a Tomonaga-Schwinger equation:

ı
δχ

δτCS
=

1
Λ

Hmatter
Eai=(3/Λ)εabcF i

bc
χ + O(lPlE) (88)

In this equation, the matter Hamiltonian is evaluated with classical gravita-
tional fields satisfying the self-dual condition Eai = (3/Λ)εabcF i

bc. As we just
said, the reality conditions then tell us that the background is de Sitter. We
have neglected higher order terms in lPlE, where E is the energy of the matter
fields measured with respect to the background metric.

The approximation procedure picks out a time coordinate called τCS , re-
lated to the Chern-Simons invariant. It is first of all a coordinate on the
configuration space of the theory, defined by

δτCS(x) =
1
2
Im εabcF i

bcδAai(x) (89)

Thus, integrated over the spatial manifold Σ, we have
∫

Σ

δτCS(x) = δIm

∫
YCS(A) (90)

If we take the integral, we can define

TCS =
∫

Σ

τCS = Im

∫

Σ

YCS (91)

This can be argued to provide a provides a good global time parameter on the
configuration space [36, 72]. This is because its derivative is always orthogonal,
in the tangent space of the configuration space, to both the gauge directions
and the directions that parameterize the physical degrees of freedom.

When evaluated on a background solution, this gives rise to a time co-
ordinate on the spacetime. One can then show that, to leading order in λ,
YCS = ı

√
det(q)K + O(

√
λ), where K is the trace of the extrinsic curvature

Kab. Thus. this choice of time coordinate agrees, to leading order in λ, with
that proposed by York [36]. This time coordinate has been shown to have
many good properties that an intrinsic time coordinate should have.

Thus, QFT on de Sitter is a good approximation to the physics of
Ψ(A,φ) = ΨK(A)χ(A,φ) when λ = �GΛ and lPlanckE are small. This stands
as a first piece of evidence that ΨK(A) may be indeed a good ground state.

There are additional terms in lPlanckE, where E is the matter energy on
the de Sitter background. We will study the effect of these terms in Sect. 14.
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13 Gravitons from Perturbations Around
the Kodama State

To further probe the properties of the Kodama state we should also investigate
its gravitational excitations. To do this we return to the case of pure gravity
and consider states of the form

Ψ [A] = N e
3
2λ

∫
YCS+λS′(A) (92)

It is not difficult to show that there are solutions of this form, and that they
do describe long wavelength gravitons moving on the classical background of
de Sitter spacetime18. But to do this we first need to know how to recognize
gravitons in this language. We then detour to summarize the results in this
area,

Linearized Gravity on a de Sitter Background

The quantization of linearized general relativity in Sen-Ashtekar variables of
the kind we are using was considered early in the study of loop quantum
gravity [77]. There a complete description was obtained of gravitons on a
Minkowski spacetime background. It is trivial to extend what was done there
to gravitons moving on a de Sitter background. As we want results that hold
for small λ, it is convenient to use λ as an expansion parameter.

Thus, we expand classical general relativity around the de Sitter back-
ground studied above in Sect. 6,

Aai = ı
√

Λf(t)δai + λaai; Eai = f2δai + λeai (93)

It is trivial then to compute the constraints to linear order to find the
linearized constraints satisfied by the aai’s and eai’s. To solve them we need
to impose 7 gauge fixing conditions. A natural set to impose is19

a[ai] = aa
a = ∂aaa

i = 0 (94)

where indices are raised and lowered by the background metric, q0
ab. The

simultaneous solution of the linearized constraints and gauge fixing conditions
is

∂aea
i = e[ai] = ea

a = 0 . (95)

The result is that the theory is reduced to ar’s and er’s that are tracefree,
divergence free and symmetric. These are spin two fields.

The linearized poisson brackets can be derived by applying the full Poisson
brackets to the linearized fields. This gives,
18 More details concerning these results will be reported elsewhere [76].
19 As an exercise one has to check that these seven gauge fixing conditions do to-

gether with the linearized constraints make a second class algebra.
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{ar
ai(x), ebj

r (y)} = ıP bj
ai δ3(x, y) (96)

where P bj
ai is the projection operator onto the symmetric, transverse, tracefree

fields.
Finally, we have to construct the linearized hamiltonian. This comes from

the quadratic terms in the integral of the hamiltonian constraint, and comes
out to be,

h(ar, er) = f−1
[
εajk(D0

aar
bk)eb

r j + Λeai
r er ia

]
(97)

It is then straightforward to quantize this theory, yielding a quantum the-
ory of gravitons on the background of de Sitter spacetime.

Linearization of the Exact Quantum Theory Agrees
with the Quantization of the Linearized Theory,
for Long Wavelength

Now we want to go the other way around and study expansions of exact states
in powers of λ around the Kodama state. We consider a product state of the
form (92) and solve all seven constraints in a neighborhood of the classical
trajectory on the configuration space.

The 6 kinematical constraints give:
∫

Σ

(Daw)i δS′

δAai
= 0;

∫

Σ

vaF i
ab

δS′

δAai
= 0 (98)

where wi and va are arbitrary functions on Σ. These are linearized around the
dS background. They are solved by taking S′ = S′(f, aai) with aai symmetric
and transverse with respect to the de Sitter background. Thus,

δS′

δAai
=

ı√
Λ

δai
δS′

δf
+

1
λ

δS′

δaai
(99)

The hamiltonian constraint is,

εabcεijk
δ

δAai

δ

δAbj

[
δS′

δAck
e

3
2Λ

∫
YCS+S′(A)

]

= 0 (100)

Using (99), this can be expanded to give:

ı
∂S′

∂t
= Ĥ2S′ + O(lPlanckE) + O(

√
λ) (101)

where the free Hamiltonian is

Ĥ2 = ĥ

(

â, ê =
δ

δa

)

(102)

and E is the energy of the graviton state with respect to the background.
Thus we conclude that for long wavelength perturbations, but only so long as
lPlE  1, the linearized theory is recovered. However it must be emphasized
that we have only obtained a correspondence with the standard linearized
theory for low energy and small λ.
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14 Corrections to Energy Momentum Relations

Now that we have recovered known physics from the Kodama solution, we
may go on to see if the theory makes any predictions beyond the recovery
of quantum field theory in the semiclassical limit. To see that it may, let us
look in detail at the fundamental (87). For simplicity we consider the case
of a massless, non-interacting scalar field, although similar conclusions apply
for other matter fields20. For this case the form of the matter term in the
Hamiltonian constraint is

Hmatter(x) =
G�

2
(
π2 + (∂aφ)(∂bφ)EaiEb

i

)
(103)

where π is the canonical momentum of the scalar field. Implemented as a
quantum operator this is,

Ĥmatter(x)ΨK(A)χ(A,φ)

=
�G

2

(

π2 + (�G)2(∂aφ)(∂bφ)
δ

δAai

δ

δAi
b

)

ΨK(A)χ(A,φ) (104)

In Sect. 12 we recovered quantum field theory in curved spacetime from an
approximation to this last expression. In this approximation we considered
only the terms in which the factors of Êai = −�Gδ/δAai in the second term
act on the Kodama state, giving terms proportional to the background frame
field , δaif

2. Keeping only these terms we have

Ĥmatter(x)ΨK(A)χ(A,φ) =
1
2

(
π2 + δabf4(∂aφ)(∂bφ)

)
χ(A,φ) (105)

which is the hamiltonian for the scalar field on the background spacetime.
To go beyond the semiclassical approximation we may then consider the

other terms in (104) in which one or both of the functional derivatives by Aai

act directly on the perturbed state χ(A,φ). These still give terms linear in
χ so they may be interpreted as corrections to the functional Schroedinger
equation. We will see that these terms give predictions of new physics.

The interpretation of the new terms is easiest when we can neglect the
effect of the cosmological constant, and approximate a region of de Sitter
spacetime by a region of flat spacetime. To get predictions for the theory
in flat spacetime, we proceed in two steps. First we evaluate the approxi-
mate solutions to the Wheeler de Witt equation at the background values of
the connection and metric we studied in Sect. 6. These are given by (19, 20).
We then approach flat spacetime by neglecting terms such as k2Λ, where k
is the momentum of a particle, which vanish in the limit Λ → 0. This is of
course a good approximation in the observed situation in which the cosmo-
logical constant is non-zero, but very small.
20 More details concerning the results of this section will appear in [76].
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Evaluating the action of δ/δAai to leading order on ΨK(A), we found that,

Êai(x)ΨK(A) = −�G
δΨK(A)
δAai(x)

= f2(t)δaiΨK(A) (106)

Thus, the full action of the functional derivatives gives

(�G)2

2
(∂aφ)(∂bφ)

(
δ

δAai

δ

δAi
b

)

ΨK(A)χ(A,φ)

= ΨK(A)
{

f4

2
(∂aφ)(∂bφ)δabχ(A,φ)

+ (∂aφ)(∂bφ)[−�Gf2 δχ(A,φ)
δAab

+
(�G)2

2
δ2χ(A,φ)
δAaiδAi

b

]
}

(107)

Above we saw that the time derivative in the functional Schroedinger equa-
tion came from terms in which a single derivative in δ

δAai
in the gravity part of

the hamiltonian constraint acted on χ(A,φ), while the remaining functional
derivatives act on ΨK(A) giving factors of the background fields through (106).
But there are also terms in the gravity part in which two and three functional
derivatives act on χ(A,φ). This will give additional corrections to the func-
tional Schroedinger equation.

Before writing them all out we have to consider the effect of the gauge
and diffeomorphism constraints. By an analysis similar to the one of the last
section, they tell us that

χ(A,φ) = χ(τ, aai, φ) (108)

where as before aai is transverse and tracefree. The dependence on the aai

describes the couplings to gravitons.
τ is a field that parameterizes the trace part of the background Aai and is

given by
Aai(x) = δaie

√
Λ
3 τ(x) + . . . (109)

For the background Aai discussed in Sect. 6 we have τ(x) = t. However its
important to keep the distinction clear: while t is a coordinate on a particular
classical solution, τ(x) is a field that parameterizes the trace part of Aai on
the whole configuration space.

On the solution, τ is related to the Chern-Simon time described above by

τCS(x) =
(

Λ

3

)3/2

e3
√

Λ
3 τ(x) (110)

Thus, we have

Êaiχ(A,φ) = −�G
δχ(A,φ)

δAai
=

ı�G

Λ
δai

δχ(A,φ)
δτ

− �G
δχ(A,φ)

δaai
(111)
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We are interested in finding leading order corrections to the propagation of a
free field on the background spacetime. Thus, we can neglect the couplings to
gravitons. Doing so gives us corrections to the Tomonaga-Schwinger equation:

ıf4 δχ(τ, φ)
δτ(x)

=
1
2
[π2 + f4(∂aφ)2]χ(τ, φ)

+
1
2
(∂aφ)2

[
2ı�Gf2

Λ

δ

δτ(x)
−

(
�G

Λ

)2
δ2

δτ2(x)

]

χ(τ, φ)

+

[

2
�Gf2

Λ

δ2

δτ2(x)
+ ı

(
�G

Λ

)2
δ3

δτ3(x)

]

χ(τ, φ) (112)

The corrections on the second line come from the action of δ
δAai

on χ
from the matter hamiltonian density, while the corrections on the last line
come from the higher order terms in δ

δAai
from the gravitational part of the

hamiltonian constraint.
To see what the effect of the corrections is on ordinary physics, we have to

re-express the Tomonoaga-Schwinger equation in terms of measurable quan-
tities that govern the low energy physics. One way to approach this is the
following.

We are interested in extracting quantum field theory on Minkowski space-
time, in the limit Λ → 0. For the limit to be non-singular we must rescale the
time coordinate, because of the factors of �G/Λ in front of the δ/δτ deriv-
atives. In any case we need to rescale to remove a density factor, as we are
interested in expressing the final answer in terms of a Schrodinger equation
rather than a Tomonaga-Schwinger type equation. To do this we must replace
the functional degree of freedom τ(x), which we have chosen to represent time
by a global coordinate T . This coordinate T is taken to be proportional to
τ on a τ = constant slice. However δ/δτ(x) and ∂/∂T have different density
weights and dimensions and this must be compensated for.

We accomplish both if we rescale so that on a fixed τ = constant slice,

�G

Λ

δ

δτ(x)
= αlPl

√
detq0

ab

∂

∂T
(113)

where α is a dimensionless parameter. The factor of
√

detq0
ab is due to the fact

that δ/δτ(x) is a density. This form is required as lPl is the only dimensional
parameter in the theory when Λ → 0. We will see shortly how α is fixed.

The next step is to integrate over the spatial manifold, so as to recover
the Schroedinger equation. To do this we multiply the whole expression by
1/

√
detq0

ab, because the form of the hamiltonian constraint we are using has
density weight two, and then integrate. We set f = 1 as we are about to take
Λ → 0 and we note that in the coordinates we are using det(q0

qb) = 1. This
gives us,
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ı
∂χ(T, φ)

∂T

(
αV Λ

lPl

)

=
∫

Σ

1
2
[π2 + (∂aφ)2]χ(T, φ)

+
∫

Σ

1
2
(∂aφ)2

[

2ıαlPl
∂

∂T
− α2l2Pl

∂2

∂T 2

]

χ(T, φ)

+
(

αV Λ

lPl

)[

2α2l2Pl

∂

∂T
+ ıα3l3Pl

∂2

∂T 2

]

χ(T, φ) (114)

where V is the volume of the spatial manifold according to the background
metric, V =

∫
Σ

√
det(q0). We impose an infrared cutoff so V is finite. We will

shortly take V → ∞ as Λ → 0.
However before we do this we should take into account the renormalization

between the bare fields and the physical fields that enter into the low energy
physics. We expect to have to renormalize because there are interactions be-
tween the scalar and gravitational fields. However, as there is a cutoff on the
spatial resolution in the exact diffeomorphism invariant states, coming from
the discreteness of area and volume, we expect the wavefunction renormal-
ization to be finite and to be proportional to powers of the ratio L

lP l
, with

V = L3 as they represent infrared and ultraviolet cutoffs. Further as we ex-
pect relativistic invariance to hold at least up to corrections in lPl, we expect
that π ≈ φ̇ and ∂aφ to renormalize by the same factor, again up to possible
corrections in lPl

21. Thus we expect

π = ZπR , ∂aφ = Z∂aφR (115)

where Z is a multiplicative renormalization. Let us suppose that Z =
β1/2(L/lPl)d/2. As the background represents de Sitter spacetime, it is natural
to scale Λ = γ/L2 where γ is a factor of order one depending on the topology.
Thus we have

ı
∂χ(T, φ)

∂T

αγ

β

(
lPl

L

)(d−1)

=

∫

Σ

1

2
[π2

R + (∂aφR)2]χ(T, φ)

+

∫

Σ

1

2
(∂aφR)2

[

2ıαlPl
∂

∂T
− α2l2Pl

∂2

∂T 2

]

χ(T, φ)

+
αγ

β

(
lPl

L

)(d−1) [

2α2l2Pl
∂2

∂T 2
+ ıα3l3Pl

∂3

∂T 3

]

χ(T, φ)

(116)

We must recover the Schroedinger equation in the limit L → ∞, lPl → 0. As
the renormalized Hamiltonian

HR =
∫

Σ

1
2
[π2

R + (∂aφR)2] (117)

should generate evolution in T , we require that the coefficient of ı ∂
∂T on the

left hand side be unity. This tells us that
21 In the following we ignore such corrections, but if found by calculations they can

be inserted directly in the following expressions.
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α =
β

γ

(
L

lPl

)(d−1)

(118)

The limit then exists for d ≤ 1. If d < 1 the additional terms disappear,
and the usual Lorentz invariant quantum field theory is recovered. But in the
case that d = 1 we have,

α =
β

γ
(119)

is a factor of order unity. Then our equation is

ı
∂χ(T, φ)

∂T
= HRχ(T, φ)

+
∫

Σ

1
2
(∂aφR)2

[

2ıαlPl
∂

∂T
− α2l2Pl

∂2

∂T 2

]

χ(T, φ)

+
[

2α2l2Pl

∂2

∂T 2
+ ıα3l3Pl

∂3

∂T 3

]

χ(T, φ) (120)

Thus, under the assumptions stated, we predict corrections to the Schroedinger
equation, of order lPl, with the finite dimensionless coefficient α determined
by the wavefunction renormalization of the scalar field theory interacting with
gravity.

Now, to analyze the scalar field theory we can use to a first approximation
a regular Fock space quantization in which

φ(x, t) =
∫

d3k
√

(2π)32ω

[
akfk(x)e−ıωt + a†

kf∗
k (x)eıωt

]
(121)

where, as Λ → 0, fk(x) ≈ eıkaxa

.
The Fock space one particle states are not going to be exact solutions to

the Wheeler-De Witt equation, but we can search for solutions of the form

χ(T, φ) = e−ıωT |k〉 + O(lPl) (122)

where |k〉 is a one particle Fock state. We do not set ω = |k| in (121), instead
we take the components 〈k| . . . |k〉 of the Wheeler-De Witt equation to extract
the relation between ω and |k|.

We find, after the standard normal ordering

〈k| : HR : |k〉 =
ω2 + k2

2ω
(123)

〈k| :
∫

Σ

(∂aφR)2 : |k〉 =
k2

2ω
(124)

Applying (120) to this state we find

ω2

(
1 + 4αlPlω + 2α2l2Plω

2
)

(
1 + αlPlω + 1

2α2l2Plω
2
) = k2 (125)
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We thus see that there are indeed corrections to the energy momentum
relations. However, we see that the precise predictions depend on the renor-
malization of the matter fields. The renormalization constants are expected
to be finite, and computable, but have not yet been computed.

15 Conclusions and Further Developments

The results described here show that there is a good possibility that loop
quantum gravity has the capacity to make unambiguous predictions for Planck
scale phenomenology. However, it has not yet done so.

I close by briefly summarizing the present situation. Previous results indi-
cated that perturbations of semi-classical states propagate according to mod-
ified energy-momentum relations. However, the examples studied in flat space
are not definitive because the states are not physical states, hence they may
just indicate that there is a preferred frame in the candidate ground state
studied. The results are also ambiguous as the exact magnitudes of the effects
depend on parameters in the candidate ground state.

The result described in the last section indicates that corrections to en-
ergy momentum relations are found even for perturbations of a physical state.
However the exact predictions depend on finite renormalization constants that
have yet to be computed. There are also open issues regarding the interpre-
tation of the Kodama state, which should be resolved.

We can look forward to further progress along several lines.

– It would be very useful if a quantum hamiltonian operator constructed
and its expectation value proved positive definite. In this case one could
determine the parameters in ansatzes for the ground state by minimizing
the energy.

– It may be possible to investigate propagation of excitations of semiclassical
states in a gauge fixed formalism.

– There is always the possibility of an indirect determination of the sym-
metry of the low energy limit or of a sum rule that would relate different
predictions, which could be tested.

– Another domain in which loop quantum gravity may make testable predic-
tions is cosmology. It would be very interesting to see if a connection could
be made between predictions in the two domains: cosmology and Planck
scale phenomenology.

If progress can be made in any of these directions, while progress continues
on the experimental side, it is not impossible that loop quantum gravity may
achieve the status of a theory that has been subject to experimental test. So
long as this is a possibility its realization should be the first priority of people
who work on quantum gravity.
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vacuum Čerenkov effect 117
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